
Data deluge
Ilya Volvovski, Cleversafe Inc

You are aware: data
is coming

This is the new age: everything is digitized The
average storage growth rate is around 60-80%
annually

Every minute of every day we create:
●  More than 200,000 email messages
●  48 hours of new YouTube videos
●  684,000 bits of content shared on Facebook
●  More than 100,000 tweets
	

http://www.domo.com/

… and coming
●  Government, intelligence gathering, maps, aerial pictures

●  Experimental data by scientific institutions in areas such as
physics, biology, climatology, chemistry, genomics
astrophysics,

●  Medical content

●  Media content: movies, TV shows, sport

●  Industries: Banking, Oil exploration

What do we need?
Build a different type of storage system

Modern Large Storage System requirements
●  Data Reliability
●  Storage scalability
●  Access scalability
●  Multiple Interfaces support
●  High system availability
●  Consistency
●  High performance
●  Security
●  Self healing
●  Integrity

o  Protection against silent data corruptions
o  Protection against intrusion and malicious tampering

Modern storage system requirements (cont)
●  Support for Disaster Recovery
●  Geo dispersion

o  Particularly for disaster avoidance
●  Tolerance to hardware failures
●  Tolerance to limping hardware
●  Tiering support
●  Integration with the existing systems
●  Efficient backend storage

o  Should be able to adapt to new technologies such as new disk types
o  A system user should not be aware of technology changes, storage system migrates data

and keeps operating
o  Flexible optimization to achieve performance requirements

Modern storage system requirements (cont)
●  Powerful system management

o  Authentication and access control
o  Scalable provisioning
o  Automated disk management
o  Hierarchical monitoring
o  Fault/event correlation
o  Fault prediction / fault tolerance
o  Automated recovery
o  Performance visualization
o  Seamless (zero downtime) upgrade

§  Data migration path during upgrades
§  Background long conversion

Storage Reliability

Storage system ability to preserve data
despite:

•  Physical devices fail
•  Networks are not 100% reliable, messages

could be lost, garbled or not delivered at all
•  Software system are not 100% reliable,

may crash
•  Storage systems could be compromised

Bits on drives will be eventually lost
●  Physical destruction
●  Magnetic deterioration. Sectors

become unreadable or corrupted
o  Latent sector errors (LSE) aka

Unrecoverable read errors (URE. The
bigger drive size the more LSE

o  Some could be detected by hardware
o  Lead to latent errors and eventual

corruption
●  More data is lost during disk failures

but silent corruption could lead to
silent data corruption due to repair
using bad bits

●  Losses due to system crashes/
programmatic corruptions

John Elerath 2007

Hardware reliability measures

●  Mean Time To Failure (MTTF)
average time to failure

●  Annualized Failure Rate (AFR)
probable percent of failure per year

●  Mean Time To Repair (MTTR):
average time to repair loss

●  1/MTTF in years = AFR
●  Mean Time To Data Loss is a

derived characteristic

Source: Backblaze
September, 2014

How do disks die

Mean time is a
relatively crude
measure

Typical ways to protect against data
loss:

•  Replication
•  RAID (Redundant Array of Independent

Disks)
•  Combination of the two

How data is protected today

RAID
Redundant Array of Independent
Inexpensive Disks
●  RAID 0 (striping)
●  RAID 1 (mirroring)
●  Only interested in RAID 5 and 6

o  Prevents a single or double error

RAID Reliability

Every additional tolerated failure
increases reliability by:
●  MTTF in years, MTTR is

measured in hours, at most days
●  Each additional tolerated failure

increases reliability by factor of
thousand

●  For a single RAID-6 (6+2) a
chance of a failure in 10 years is
0.13% and expected data loss is
7.2MB

The formulas are an accurate
approximation for MTTF/MTTR >> N

Data Loss Probability in Large Storage
Systems

RAID critique
●  MTTF improves but significantly slower than increase in storage capacity

and disk read/write speed. LSE if present during rebuild may cause silent
rebuild errors to creep into system and remain hidden leading to data
corruption.

●  Can tolerate only one or two concurrent failures. The bigger the system the
more chances to have concurrent failures.

●  LSE chances increase with size.
●  High chances correlated errors as parity disks are often in the same

location, rack, enclosure.
●  High system capacity makes probability to fail much higher.
●  Doesn't improve availability

Need copies
●  Typically three - Magic standard for enterprise

o  HDFS - Hadoop
o  CEPH - Distributed File Storage
o  Riak - Distributed Data Storage with DBMS

●  Too expensive
●  Less secure
●  More complex to make consistent

An alternative to RAID + Copy àIDA
An information dispersal algorithm (IDA) is a method of
storing data along with redundant (coded) data calculated
from the original set.
●  K (>=1) is the number of original disks
●  M (M>=0) is the number of coded disks created from the original K
●  Any combination of M, K is theoretically possible

o  K=1, M=0 - single unprotected disk
o  K=1, M>0 - M level replication
o  K, M=1 - RAID-5
o  K, M=2 - RAID-6

●  Storage overhead: M/K
●  Computational complexity in general case: O(M*K)
●  Only restores data if lost (erased), does not detect failures. Other methods of protection should

be used against data corruption.

Another look at IDA for storage
Another way to arrange the same process is to split the original data in K+M
pieces in such a way that any K (threshold) could be used to restore the
original data.
There are several ways to split the original data in K parts and calculate
coded

W(idth)= K+M
T(hreshold) = K

A little history
1. Shamir(1979) How to share secret

o  Space inefficient, coded data is of the same size as
the original data, total size N*size

o  Based on polynomial properties
o  Information theoretically (unconditionally) secure

2. Rabin (1987) Information Dispersal
Algorithm (IDA)
o  Most space efficient: overhead is (N/K)*size
o  Only computationally secure

Why IDA now? IDA Enablers

Computer industry megatrends
served as IDA enablers:
Dynamics in changes:
●  Disk
●  CPU
●  Networking
●  RAM

Historical trends in computer industry

Mechanics:
Performance is limited by
rotation and head
movements

Photonics:
Performance is limited by
wavelength of light through
fiber

Electronics:
Performance is limited by
chip density

Increasing slower than
Moore’s Law
●  Hard Drive Speed

Increasing faster than
Moore’s Law
●  Networking speed

Increasing as fast as
Moore’s Law
●  CPU
●  Memory Capacity
●  Hard Drive capacity

IDA is a form of erasure coding

Reed-Solomon(RS)
codes

Tornado Codes

Reconstruction codes
(LRC) MS Azure

●  The lowest overhead.
●  Computationally expensive:

o  With modern architecture
becomes irrelevant

●  Computationally more efficient O(n

+m), use only XOR.
●  May require more than M blocks to

decode.

●  Derived from MDS (Maximum

Distance Separable Codes, such as
RS)

●  Trade space efficiency for faster
rebuild.

IDA basics (Reed/Solomon)
In the general case a matrix is
NxK, where K is the number of
disks (or threshold) and N=K+M,
sum of original and encoded disks
(or width).

If any K*K submatrix is reversible,
the original D0-Dk-1 could be
recalculated as a system of linear
algebraic equations from any k
codewords

IDA Reed-Solomon (optimized)

This encoding matrix with
identity K*K is called
systematic.
The input data appears in
output codes. Only M
values should be encoded.
Galois field arithmetic is
used.

IDA advantages over RAID

MTTDLK/N-IDA-system=

Controlled reliability

●  No control over MTTF
●  Little control over MTTR
●  Full control over N and K

The formula is an approximation for MTTF/MTTR >> N

IDA advantages over RAID (cont)
●  Natural support concurrency support
●  Data is spread across nodes:

o  Fewer correlated failures
o  Allows for multi-site recovery without replication.
o  Preserves availability during node and network outages.
o  Could be geographically distributed.

●  Advanced rebuilding and protection techniques:
o  Scales well with size, multiple agents could participate on

rebuilding of a disk failure.
o  Protects against malicious corruption and tempering.

●  Security: data is not stored in a single location
●  Computationally very efficient with the latest hardware (instructions,

architectures etc).

IDA critique
●  Expensive rebuilding

o  in order to restore 1 MB, the system needs to read threshold K MB of
slices. Try to avoid rebuilding by all means: predictive drive failure
algorithms. Improved network speed and CPU enhancements make it
less critical. Research to develop minimum-storage-regenerating
(MSR) codes

●  IOPs for small objects.
o  For objects under 100KB slices become small. Poorly scalable under

this condition. Combine replication/IDA; SSD use for efficiency; tiering;
caching. SSD drives mostly eliminate IOPs issues for small objects.

●  Computationally expensive
o  With advances of CPU technology computational expense quickly

goes away.

The classic file based storage systems (NAS/SAN) don’t
meet the modern day requirements for multi-petabyte
storage.
●  File system path base identification is not adequate for application.
●  Inherent directory contention.
●  Typically local File System is Based on Block Storage

Classic File based Storage Systems

Need an alternative

Does it look somewhat familiar?

Object Storage
●  Non-structured
●  Global unique identification
●  Associated metadata
●  Tag searchable

A highly scalable alternative to FS, typically distributed

De facto standard protocols: S3, OpenStack, CDMI

It is disruptive

●  Location independent
●  Self describing
●  Typically WORM

System Properties
We (You) Want

General Scalability
●  Scale-out
●  No single point of failure
●  Share nothing but network resources.
●  Additional resources should be accepted with little overhead (may require

some rebalancing but should be transparent otherwise).
●  Loss of resource should be compensated (discovery and self-healing).
●  Virtualized (client should not be aware of physical location).

Storage Size Scalability
No limitations of physical size growth:
● May start small, terabytes or petabytes and

grow to exabytes.
●  Thin provisioning.
●  Performance should scale with size.
●  Single addressable space.
●  Storage device of different types and sizes

should be combined.

Namespace Scalability
In order to build a large system one needs a huge
namespace to reference all objects. A single system should
be able to maintain many ZetaBytes. Namespace truly has
to exceed any meaningful limits:
●  Address space should be such that a probability of a

collision on random name generation should be smaller
than any physical random events or longer than typical
data survival span by several order of magnitude.

Access scalability
●  Number of concurrent supported clients should grow

along with storage growth (access size scaling).
●  Should be independent from number of storage nodes

(storage size scaling).
o  Some limits could be based on storage size (access scales

along with storage size).
o  Provide graceful degradation on overload.

Consistency
Consistency: ability to read latest version of data.
●  Immediate consistency
●  Eventual consistency

Why is it important?
•  Software logic could rely on the fact that if data is written

it is available for read.

Availability
Availability: a system ability to respond within a reasonable
amount of time without error or timeout.
●  Network partition
●  Hardware failure

o  disk
o  controllers
o  memory

●  Software crashes
o  Including kernels

●  System upgrades
●  Measured in 9 of availability, percent of the time the system could store

and retrieve data (or may be partially available: read or write, but not both).

High performance
●  A very difficult task for distributed storage

system
●  System needs to be adaptive to ever changing

conditions
●  Scale with storage system size
●  Sensitive to changing over time bottlenecks

Performance measurements

●  Throughput
o  Large objects
o  Archiving systems

●  IOPs
o  Small objects

●  Latency
o  Interactive applications

●  Time-To-First-Byte (TTFB)
o  Streaming

Self healing / Rebuilding
●  Self-healing restores the original redundancy
●  Creates additional traffic and system load.
●  Should be scalable with storage size.
●  Should be adaptable to storage state.

Forms of data preservation
Rebuilding is the last but the most expensive resort
for data preservation. Others could be deployed:
●  Disk failure prediction
●  Tolerance to partial failures
●  Disk retirement

Security aspects (CIA)
●  Confidentiality

o  Only authorized entities could access data.
Attackers should not be able to read/write or modify.

●  Integrity
o  Data is what you expect it to be.

●  Availability
o  The information has value if the owner could actually

obtain and use it

Forms of data protection
●  Data at rest
●  Data in motion
●  Unauthorized entities should not have access to

recognizable data but could access
unrecognizable bits.

Tiering
●  Human defined rules
●  Automatic detection
●  Ability to move data from faster (more

expensive) to slower storage and visa versa in
order to improve latency for ‘hot’ objects

Universal access
Applications must be able to store and retrieve data using their existing
protocols without requiring changes to underlying applications.
●  Support the existing object de-facto standards

o  S3
o  Openstack
o  CDMI
o  Open for inclusion and interoperability

●  Storage systems must be able to interoperate with traditional file protocols
o  NFS
o  CIFS
o  Hadoop HDFS.

GEO dispersal
●  Reduce fault correlation
●  Make storage elements closer to a client
●  Temporary loss of a single site should

preserve both consistency and availability
o  R+W > IDA_Width
o  2 site problem for an efficient IDA

Computational compatibility
The stored data should be analyzable
●  Logs
●  Intelligence data, pattern search
●  User data (indexing, face recognition)

●  Hadoop support is essential
●  Native HDFS support facilitates
●  Hadoop deployment on storage nodes

Challenge: avoid data movement between storage nodes
●  Apply IDA differently

is the most popular analytics system

Building production quality systems

Defining and designing to meet
system requirements is a long
way from having a high quality,
operational and usable
production system.

Practical concerns

Illustrated with Cleversafe dsNet
Some

project are
successful

even
though a
picture

looks scary

Cleversafe

Building production quality system
o  Stable under all circumstances

•  Errors
•  Misbehaving components
•  In presence of software errors
•  Adverse conditions

o  Graceful degradation in case of anomalies such as
•  Load over capacity
•  Failing components
•  Limping components

UI
•  Friendly and secure UI
•  Configurable
•  Major Features

•  User management
•  Storage Provisioning: system growth
•  Storage allocation /decommissioning
•  Customization
•  Backup/restore

Maintainability
§  Performance monitoring
§  Events
§  Statistics
§  Alerts
§  Log collection and automatic analysis
§  Reports (hardware/software/network)
§  Troubleshooting
§  Maximum automation but not more

System architecture

System architecture (cont)

●  The Accesser device connects to the user’s application
clients over the network and used for access scalability
o  Talks many protocols
o  Stateless
o  Performs IDA, encryption/decryption. High CPU use
o  10Gig network
o  Typically utilizes a load balancer for workload distribution.
o  Software

§  Route IDA artifacts
§  Read/Write intelligence
§  Stateless
§  HTTP/REST API

System architecture (cont)

The Slice Store device – actual storage (IDA byproducts)
o  Stores data, ultra dense up to 336 TB in a single box

and growing
o  Hot swappable disks
o  10Gig network
o  Software:

§  Store/Retrieve data
§  Manage disks
§  Rebuilding
§  Proprietary protocol

System architecture (cont)

●  The Manager
o  System Configuration
o  System Maintenance
o  HTTP REST/API based

§  Anything that could be done through UI could be done
through API for integration

o  SNMP enabled
o  Has dedicated agents on each node
o  Stores stat data locally (short term)
o  Stores data in regular distributed containers (long term)

Architectural principles
●  Efficient reliability based on IDA

o  Data/ metadata/index (no exceptions)
●  Proven scalability on every level

o  Data
o  Configuration

●  Threshold security
o  confidentiality based on threshold number

of components, an intruder needs to
compromise at least threshold to break
security

●  Efficient backend storage
o  The last mile

Authentication
Support different types:
●  Internal Username/Password
●  Externally managed Username/Password
●  Public Key Infrastructure
●  Active Directory or Open LDAP server
●  Open for DIY

o  Implement
o  Integrate

Internal Interfaces
●  Simple Object (SO)

o  Accept data, return an opaque long ID
o  Client is responsible for maintenance
o  The most efficient and scalable

●  Named object (NO) - used for S3, Openstack
o  Accept both data and names
o  Client access by name
o  Listable or not listable

●  Index support for all (in progress)
o  Ability to find data based on metadata
o  Scalable, collision resistant

●  CIFS,NFS, HDFS

Scalable UI
●  A large system may have hundreds and thousands

elements:
●  System/component/container health

o  Simple to understand notions
●  User defined views
●  Compare Views
●  Persistent Preferences

Configuration
●  System initialization
●  Containers’ creation/deletion
●  Access controls, role based
●  Format, unit selection

Provisioning
●  Easy to understand and manipulate

o  Grouping
o  Pools
o  Templates

●  Hardware provisioning
o  Bulk
o  Secure

●  Logical
o  Storage container creation/deletion
o  Limits/quotas

Namespace
Each object name consists of:
•  22 bytes routable name

•  Container UUID
•  Storage type (hint the storage implementation)
•  Generation ID (expansion factor)

•  24 bytes storage random internal
•  Slice Name is an object name + IDA index
Total addressable name is 48 bytes

Realistic IDA configurations
Immediate versus long term reliability
Guaranteed level (W/T/WT) - Write threshold

16/10/13 26/20/23 36/20/23

Functionality
Unsung hero!!!

Regular operations
•  Write
•  Read
•  Delete
•  List

Rebuilding
Ability to effectively repair lost system elements is one of
the most important features of the storage system. Includes
the following critical elements:
●  Discovery (scanning)

o  Should be fast enough
o  Should have little impact on overall system performance
o  Scale with storage size

●  Repair
o  Data recovery
o  How to make it secure in IDA settings

Scalable Dispersed Index
●  Optimistic concurrent index structure

o  like B-tree, but lockless
o  Similar to concurrent skip list but uses batching

Limping components
●  Components

o  Drives
o  Cables
o  Switches
o  Any hardware could misbehave
o  Software

§  Zombie process
●  Remove permanently limping components

from the critical path

Disk Management
●  Detect
●  Identify
●  Tolerate
●  Isolate
●  Notify
●  Remove/Replace

●  Predict
●  Isolate
●  Migrate
●  Remove/Replace

Danger of false positives

Failing disk discovery
●  S.M.A.R.T

o  Choose attributes which predict failures
§  Reallocated Sectors
§  Spin Retry Count (impending mechanical problems)
§  Pending Sector Count (unstable to be remapped)
§  … and others

o  Make sense of this information
§  Not easy, no standard interpretation, vendors differ

●  Software heuristics
o  Kernel level (inability to mount file system)
o  Application level (abnormal operation execution time, too many errors)

Failing disk replacement
●  Simple

o  Zero maintenance
§  Remove, replace and forget (little training)

o  Hot swappable. No need for coordination
●  The least impactful

o  Salvage as much data as possible (rebuilding is
expensive).
§  but don’t try too hard

Storage System Maintenance
Maintenance is a complicated multi-facet topic which
includes various elements.
●  Understand system behavior
●  Identify bottlenecks
●  Alert about observed or potential system failures
●  Correlate events
●  Facilitate proactive equipment replacement
●  Perform system upgrades

System monitoring

Storage system should be
able to proactively convey
operational details in
consumable and
actionable form.

Performance indicators
●  Client throughput/latency
●  Network throughput
●  Message Ack times
●  Disk IO

ETC.

Failing hardware performance impact

●  Waiting on a failing component impacts
performance
o  Latency
o  Throughput

●  Typically easy to detect
●  System has built-in redundancy, use it wisely

Limping hardware performance impact

●  A limping component is the a component
that works but
o  May behave like a zombie
o  System components are under attack
o  Slow due to temporary condition (e.g. Java GC)
o  Could be transient or permanent

How to address performance issues
●  Do concurrently as many operations as

possible
●  Report success to a client as soon as

contract is fulfilled
●  Wait for component’s operation completion

based on historic averages
●  Retry in order to remove dependence on a

slow component

System health
The indicator for data reliability
●  Visual representation of data reliability
●  Automatic/manual system shutdown when

reliability is dangerously low
●  Automatic/manual switching to degraded

mode
●  Feedback to the rebuilding component

Troubleshooting capabilities
●  How easy

o  to find a faulty element
o  to isolate a faulty element
o  to replace a faulty element

●  Detect bottlenecks
o  To change system configuration
o  To improve networking
o  To change hardware

Management API
Anything that could be done through UI, should
be available through Manager API:
●  To automate
●  To integrate

System upgrade
●  Systems evolve, features are added, bugs are fixed

o  Storage systems must be upgraded
Zero downtime upgrade is the absolute must for any
production quality storage system
●  As much parallelism but not too much

o  Maintain availability and reliability during upgrade
o  Find most data independent elements to upgrade in parallel

●  Format changes
o  Data migration: mostly metadata (easy at startup) but sometime data

format (needs to be executed in background)

Defensive practices
●  Never allow mass non-user initiated mass cleanups
●  If something looks strange it is probably wrong

o  Keep reasonable caps on all assumptions
§  leftovers after crash could not exceed X

o  Never delete data in large chunks
§  How much data could be corrupted?
§  How much could be unreadable while disk is operational?
§  How many times you could experience a rare condition (such as

across node checksum don’t match)

Defensive practices (cont)

●  Create recovery procedure
o  Especially after crash
o  Mechanism to determine crash condition
o  Always assume the worst
o  Checkpointing

●  UPS (battery backup)
o  Power outages do happen
o  Sync mode is prohibitively performance expensive

Securing data without key management

IDA generated data is not secure
●  Reveals information from the original data

(unless it is encrypted)
● Make disks vulnerable to theft, thus...
●  A significant expense for safe maintenance

(easy)
●  A significant expense for safe destruction

(hard)

IDA leaks information

A	
 tree	
 encoded	

with	
 15/10	
 IDA	

AONT with IDA

●  Encrypt data with random
key

●  XOR with hash of
encrypted data

●  Add the result to data
●  This is the final package

and data could not be
recognized

What else is going on

Storage hardware trends
●  Rotating Perpendicular Magnetic Recording (PMR) drives do not become

much faster, but become more dense
●  SSD become cheaper and less write weary, could last many overwrites.

Still more expensive
●  New rotating Shinged Magnetic Recording (SMR)drives increase capacity

of magnetic drives. Zone overlap, data can’t be overwritten in place
o  Device managed mode (looks like a normal drive)
o  Host managed mode (host is responsible for correct access pattern to

an SMR drive)
o  Emerging standards for cross vendor operability
o  Could be very efficient in specialized storage systems
o  10TB SMR drives is today’s reality, 16TB will be available in a few

years

Object Storage disks
●  Kinetic Open Storage Platform (Seagate)

o  Key/Value store with version support
o  Provides put/get/delete with version functionality
o  Network addressable
o  Provides data at rest security (PKI)
o  Removes artificial for Object Storage block/sector to

object mapping (done inside a disk)
o  Drive-To-Drive Data transit (rebalancing between

drives without other entities involvement)
o  Has full application stack inside (Kinetic is not open)
o  Improves performance

Object Storage disks (cont)

●  Built-In Ethernet and Key/Value store
o  It is what a lot of object storage application need

§  Remove the necessity to compile one representation into another
o  Great promise

●  But
o  May not be compatible or efficient with Object STorage

required semantics
o  Much harder to overcome limitations compared with DYI

approach

Who is who in Object Storage world

1.  https://www.backblaze.com/blog/hard-drive-reliability-update-september-2014/
2.  RABIN, M. O., Efficient dispersal of information for security, load balancing, and fault tolerance. Journal of the

Association for Computing Machinery 36, 2 (April 1989), 335–348.
3.  Shamir Adi, How to Share a Secret, 1979 http://cs.jhu.edu/~sdoshi/crypto/papers/shamirturing.pdf
4.  Reed-Solomon coding in depth introduction:

http://web.eecs.utk.edu/~plank/plank/papers/CS-96-332.pdf
3.  Disk failures types http://queue.acm.org/detail.cfm?id=1317403
4.  Resch J., Volvovski I. , Reliability Models for Highly Fault-tolerant Storage Systems
5.  CAP Theorem: http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
6.  Super computers performance:

http://www.computerweekly.com/news/2240148760/Supercomputers-will-reach-exascale-speeds-within-decade
7.  Lehman B, Yao Bing, B-link trees: http://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
8.  AONT-RS: Blending Security and Performance in Dispersed Storage Systems

https://www.usenix.org/legacy/event/fast11/tech/full_papers/Resch.pdf
9.  IDS report: http://www.theregister.co.uk/2013/11/27/idcs_objectscape_pretty_as_a_picture/

Sources

Thank you !

