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Packet Capture is an essential function 
for many network applications

• Security analysis (e.g., IDS/IPS)
– Snort, www.snort.org
– Suricata, http://suricata-ids.org

• Network and application performance analysis
– Riverbed SteelCentral NetProfiler
– Netscout Sniffer Analysis
– Wildpackets OmniPeek Network Analyzer 

• Traffic characterization studies
– Benson, IMC’10
– And more

http://www.snort.org
http://suricata-ids.org
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captureNetworks

A general packet capture process 

Typically computationally and I/O throughput intensive

Significant performance challenges in high-speed networks

Delivery AppsData capture 
buffer
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captureNetworks Delivery Apps
Buffer

Packet drop is a major problem with 
packet capture in high-speed networks 
Type I packet drop: packet capture drops

Type II packet drop: packet delivery drops

captureNetworks Delivery Apps
Buffer

Packet drops degrade the accuracy & integrity of network monitoring 
applications!
Fundamental design goal in packet capture tools:   Avoid packet drops! 

Drop!

Drop!
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Packet capture approaches
1. Use dedicated packet capture card

– Pros
• The least amount of CPU intervention 
• Lossless packet capture and delivery

– Cons: costly, relatively inflexible, and not very scalable

2. Use a commodity system with a commodity NIC
– A commodity NIC in promiscuous mode to intercept pkts
– A capture engine provides capture and delivery services
– Pros: flexible and cost effective
– Cons: significant system CPU and memory resources

The 2nd approach becomes more appealing with recent advances 
in multicore systems and multi-queue NICs: 

– A new paradigm in packet capturing and processing.
– This is our research focus. 
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A new packet capturing and processing 
paradigm

Assumption: the hardware-based traffic-steering mechanism is 
capable of evenly distributing the incoming traffic among cores.
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Question 1
Can NIC hardware-based traffic-steering 

mechanisms evenly distribute the 
incoming traffic among cores?

Question 2
Can existing packet capture engines 
support this new packet capture and 

processing paradigm?



4/21/2015ACM IMC’148

Experiment Proof 

• Traffic captured at FNAL border router used as experiment data
• System A runs as a traffic generator to replicate captured data

– both content & spacing…

• On System B, two experiments are run:
– Exp1. Profiling traffic from each receive queue
– Exp2: A single-threaded application is run at each core to 

capture & process pkts from its associated receive queue
– We evaluate existing packet capture engines.

-- DNA , PF_RING (Luca et al) -- NETMAP (Luigi ATC’12)

Intel 82599 10GE NIC
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Observation 1: load imbalance occurs 
frequently in a multicore system

Two types of load imbalance
– Short-term load imbalance (short-term burst of packets)
– Long-term load imbalance (queue 0 receives much more 

traffic than queue 3)

Existing NICs distribute traffic on a per-flow basis!
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Observation 2: existing packet capture 
engines suffer significant packet drops

Existing packet capturing engines suffer significant packet 
drops with load imbalance of either type!

NETMAP DNA PF_RING

Receive Queue 0

Packet Capture Drops 46.5% 50.1% 0%

Packet Delivery Drops 0% 0% 56.8%

Receive Queue 3

Packet Capture Drops 33.4% 9.3% 0.8%

Packet Delivery Drops 0% 0% 0%

Packet drop rates with a heavy packet-processing load 
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Problems with existing packet capture 
engines

Engines Deficiencies Can it handle Short-
term load imbalance ?

Can it handle Long-
term load imbalance?

NETMAP Limited buffering capability
No offloading mechanism ✖ ✖

DNA Limited buffering capability
No offloading mechanism ✖ ✖

PF_RING
Copying in packet capture
Receive livelock problem
No offloading mechanism

✖ ✖



4/21/2015ACM IMC’1412

How to avoid packet drops that are 
caused by load imbalance?

1. To apply a round-robin traffic steering mechanism at NIC level 
for traffic distribution
– Does not preserve application logic
– Results in poor system performance

2. To use existing packet capture engines (e.g. DNA) and to 
address load imbalance in application layer
– An application has little knowledge of low-layer conditions
– Must involve copying
– Making the application complex and difficult to design

3. Our solution is to design a new packet capture engine to address 
load imbalance at packet-capture level



Our Solution

WireCAP: a Novel Packet Capture Engine for 
Commodity NICs in High-speed Networks
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WireCAP Design Goals

• Provide lossless packet-capture services in 
high-speed networks

• Provide efficient packet delivery
• Be efficient
• Facilitate design & operation of packet-

processing applications in user space
• Wide applicability
• Support middlebox-type applications

– Needs to implement a transmit function
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WireCAP Key Techniques

• The ring-buffer-pool mechanism
– To handle short-term load imbalance

• The buddy-group-based offloading mechanism
– To handle long-term load imbalance

• Optimization techniques
– Pre-allocated large packet buffers
– Zero-copy
– Packet-level batching processing
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The ring-buffer pool mechanism:

Receive ring

How does a 
NIC receive 

packets?
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The ring-buffer pool mechanism

• A receive ring is divided into descriptor segments
• Each segment consists of M receive pkt descriptors
• Ring is preallocated with R pkt buffer chunks (ie. ring buffer pool) 
• A pkt buffer chunk consists of M packet buffers
• Each descriptor segment must be attached with an empty pkt

buffer chunk to receive pkts
• Supports four operations through ioctl interface

-- Open          -- Capture          -- Recycle -- Close

Ring buffer pool
(R*M)
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The buddy-group mechanism

• Executes traffic offloading in an application-aware manner
– Receive queues accessed by a single application can form a 

buddy group
– Traffic offloading is only permitted within a buddy group
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WireCAP Architecture

• Low-level packet capture and 
transmit service

• The ring-buffer-pool mechanism

• A Libpcap-compatible interface for 
low-level network access

• The buddy-group-based offloading 
mechanism
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WireCAP Operations 
• Lossless zero-copy packet capture and delivery

• Zero-copy packet forwarding
– Only involving metadata operations

Threshold: T
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WireCAP Implementation

• The current implementation consists of a kernel-
mode driver and a user-mode library

• OSes Supported
– Linux kernel 3.16
– We are working to support other OSes

• Commodity NICs supported
– Intel 82599-based 10GigE NIC
– Working on support for 40 GigE NICs
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WireCAP Evaluation

• Exp1 - Packet capture in the basic mode
– System A generates P 64B packets at wire speed (14.88 million p/s)
– NIC1 is configured with one RQ
– A single-threaded application captures and processes pkts at System B

• Exp2 - Packet capture in the advanced mode
– System A replays the captured data
– NIC1 is configured with multiple RQs, all RQs form a buddy group
– A multiple-threaded application captures and processes pkts at System B

• Exp3 - Packet forwarding
– System A replays the captured data
– NIC1 is configured with multiple RQs, all RQs from a buddy group
– A multi-threaded application captures and processes pkts at System B, 

processed pkts are forwarded to System C via NIC2

• We use traffic captured from Fermilab 
border router as experiment data

• System A runs as a traffic generator:
• generates 64B packets at wire speed
• replays captured data as recorded

(or)
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Packet Capture in the basic mode

• WireCAP demonstrates superior buffering capabilities for 
short-term bursts of packets 

• WireCAP’s buffering capability is proportional to the 
overall ring buffer capacity R*M

R and M are varied, R*M is fixedWireCAP vs. existing packet 
capture engines

M
R
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Packet Capture in the advanced mode

• The buddy-group-based offloading mechanism achieved 
significant improved performance

• In general, WireCAP performs better when T is set to a 
relatively lower value

WireCAP vs. existing packet 
capture engines

R and M are fixed, T is varied

M
R

T
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Packet Forwarding

• WireCAP’s packet forwarding function is capable of 
supporting middlebox applications 

• The buddy-group-based offloading mechanism can 
achieve a significant improved performance

WireCAP vs. existing packet capture engines
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Summary

• WireCAP provides zero-copy lossless packet 
capture and delivery services by exploiting 
multi-queue NICs and multicore

• WireCAP provides a new packet I/O framework 
for commodity NICs in high-speed networks



4/21/2015ACM IMC’1427

Future Work

• Compare WireCAP with DPDK

• Adapt WireCAP for 40GE NICs
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Questions?

WireCAP website:
http://wirecap.fnal.gov

Source code is available:

Please contact Fermilab’s Office of Partnerships and 
Technology Transfer (OPTT)  <optt@fnal.gov> to obtain a 
copy of WireCAP

http://wirecap.fnal.gov
mailto:optt@fnal.gov
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