
4/21/2015ACM IMC’141

WireCAP: a Novel Packet Capture Engine
for Commodity NICs

in High-speed Networks

Wenji Wu, Phil DeMar
Fermilab Network Research Group

wenji@fnal.gov, demar@fnal.gov

ACM IMC 2014
November 5-7, 2014 Vancouver, BC, Canada

mailto:wenji@fnal.gov
mailto:demar@fnal.gov

4/21/2015ACM IMC’142

Packet Capture is an essential function
for many network applications

• Security analysis (e.g., IDS/IPS)
– Snort, www.snort.org
– Suricata, http://suricata-ids.org

• Network and application performance analysis
– Riverbed SteelCentral NetProfiler
– Netscout Sniffer Analysis
– Wildpackets OmniPeek Network Analyzer

• Traffic characterization studies
– Benson, IMC’10
– And more

http://www.snort.org
http://suricata-ids.org

4/21/2015ACM IMC’143

captureNetworks

A general packet capture process

Typically computationally and I/O throughput intensive

Significant performance challenges in high-speed networks

Delivery AppsData capture
buffer

4/21/2015ACM IMC’144

captureNetworks Delivery Apps
Buffer

Packet drop is a major problem with
packet capture in high-speed networks
Type I packet drop: packet capture drops

Type II packet drop: packet delivery drops

captureNetworks Delivery Apps
Buffer

Packet drops degrade the accuracy & integrity of network monitoring
applications!
Fundamental design goal in packet capture tools: Avoid packet drops!

Drop!

Drop!

4/21/2015ACM IMC’145

Packet capture approaches
1. Use dedicated packet capture card

– Pros
• The least amount of CPU intervention
• Lossless packet capture and delivery

– Cons: costly, relatively inflexible, and not very scalable

2. Use a commodity system with a commodity NIC
– A commodity NIC in promiscuous mode to intercept pkts
– A capture engine provides capture and delivery services
– Pros: flexible and cost effective
– Cons: significant system CPU and memory resources

The 2nd approach becomes more appealing with recent advances
in multicore systems and multi-queue NICs:

– A new paradigm in packet capturing and processing.
– This is our research focus.

4/21/2015ACM IMC’146

A new packet capturing and processing
paradigm

Assumption: the hardware-based traffic-steering mechanism is
capable of evenly distributing the incoming traffic among cores.

4/21/2015ACM IMC’147

Question 1
Can NIC hardware-based traffic-steering

mechanisms evenly distribute the
incoming traffic among cores?

Question 2
Can existing packet capture engines
support this new packet capture and

processing paradigm?

4/21/2015ACM IMC’148

Experiment Proof

• Traffic captured at FNAL border router used as experiment data
• System A runs as a traffic generator to replicate captured data

– both content & spacing…

• On System B, two experiments are run:
– Exp1. Profiling traffic from each receive queue
– Exp2: A single-threaded application is run at each core to

capture & process pkts from its associated receive queue
– We evaluate existing packet capture engines.

-- DNA , PF_RING (Luca et al) -- NETMAP (Luigi ATC’12)

Intel 82599 10GE NIC

4/21/2015ACM IMC’149

Observation 1: load imbalance occurs
frequently in a multicore system

Two types of load imbalance
– Short-term load imbalance (short-term burst of packets)
– Long-term load imbalance (queue 0 receives much more

traffic than queue 3)

Existing NICs distribute traffic on a per-flow basis!

4/21/2015ACM IMC’1410

Observation 2: existing packet capture
engines suffer significant packet drops

Existing packet capturing engines suffer significant packet
drops with load imbalance of either type!

NETMAP DNA PF_RING

Receive Queue 0

Packet Capture Drops 46.5% 50.1% 0%

Packet Delivery Drops 0% 0% 56.8%

Receive Queue 3

Packet Capture Drops 33.4% 9.3% 0.8%

Packet Delivery Drops 0% 0% 0%

Packet drop rates with a heavy packet-processing load

4/21/2015ACM IMC’1411

Problems with existing packet capture
engines

Engines Deficiencies Can it handle Short-
term load imbalance ?

Can it handle Long-
term load imbalance?

NETMAP Limited buffering capability
No offloading mechanism ✖ ✖

DNA Limited buffering capability
No offloading mechanism ✖ ✖

PF_RING
Copying in packet capture
Receive livelock problem
No offloading mechanism

✖ ✖

4/21/2015ACM IMC’1412

How to avoid packet drops that are
caused by load imbalance?

1. To apply a round-robin traffic steering mechanism at NIC level
for traffic distribution
– Does not preserve application logic
– Results in poor system performance

2. To use existing packet capture engines (e.g. DNA) and to
address load imbalance in application layer
– An application has little knowledge of low-layer conditions
– Must involve copying
– Making the application complex and difficult to design

3. Our solution is to design a new packet capture engine to address
load imbalance at packet-capture level

Our Solution

WireCAP: a Novel Packet Capture Engine for
Commodity NICs in High-speed Networks

4/21/2015ACM IMC’1413

4/21/2015ACM IMC’1414

WireCAP Design Goals

• Provide lossless packet-capture services in
high-speed networks

• Provide efficient packet delivery
• Be efficient
• Facilitate design & operation of packet-

processing applications in user space
• Wide applicability
• Support middlebox-type applications

– Needs to implement a transmit function

4/21/2015ACM IMC’1415

WireCAP Key Techniques

• The ring-buffer-pool mechanism
– To handle short-term load imbalance

• The buddy-group-based offloading mechanism
– To handle long-term load imbalance

• Optimization techniques
– Pre-allocated large packet buffers
– Zero-copy
– Packet-level batching processing

4/21/2015ACM IMC’1416

The ring-buffer pool mechanism:

Receive ring

How does a
NIC receive

packets?

4/21/2015ACM IMC’1417

The ring-buffer pool mechanism

• A receive ring is divided into descriptor segments
• Each segment consists of M receive pkt descriptors
• Ring is preallocated with R pkt buffer chunks (ie. ring buffer pool)
• A pkt buffer chunk consists of M packet buffers
• Each descriptor segment must be attached with an empty pkt

buffer chunk to receive pkts
• Supports four operations through ioctl interface

-- Open -- Capture -- Recycle -- Close

Ring buffer pool
(R*M)

4/21/2015ACM IMC’1418

The buddy-group mechanism

• Executes traffic offloading in an application-aware manner
– Receive queues accessed by a single application can form a

buddy group
– Traffic offloading is only permitted within a buddy group

4/21/2015ACM IMC’1419

WireCAP Architecture

• Low-level packet capture and
transmit service

• The ring-buffer-pool mechanism

• A Libpcap-compatible interface for
low-level network access

• The buddy-group-based offloading
mechanism

4/21/2015ACM IMC’1420

WireCAP Operations
• Lossless zero-copy packet capture and delivery

• Zero-copy packet forwarding
– Only involving metadata operations

Threshold: T

4/21/2015ACM IMC’1421

WireCAP Implementation

• The current implementation consists of a kernel-
mode driver and a user-mode library

• OSes Supported
– Linux kernel 3.16
– We are working to support other OSes

• Commodity NICs supported
– Intel 82599-based 10GigE NIC
– Working on support for 40 GigE NICs

4/21/2015ACM IMC’1422

WireCAP Evaluation

• Exp1 - Packet capture in the basic mode
– System A generates P 64B packets at wire speed (14.88 million p/s)
– NIC1 is configured with one RQ
– A single-threaded application captures and processes pkts at System B

• Exp2 - Packet capture in the advanced mode
– System A replays the captured data
– NIC1 is configured with multiple RQs, all RQs form a buddy group
– A multiple-threaded application captures and processes pkts at System B

• Exp3 - Packet forwarding
– System A replays the captured data
– NIC1 is configured with multiple RQs, all RQs from a buddy group
– A multi-threaded application captures and processes pkts at System B,

processed pkts are forwarded to System C via NIC2

• We use traffic captured from Fermilab
border router as experiment data

• System A runs as a traffic generator:
• generates 64B packets at wire speed
• replays captured data as recorded

(or)

4/21/2015ACM IMC’1423

Packet Capture in the basic mode

• WireCAP demonstrates superior buffering capabilities for
short-term bursts of packets

• WireCAP’s buffering capability is proportional to the
overall ring buffer capacity R*M

R and M are varied, R*M is fixedWireCAP vs. existing packet
capture engines

M
R

4/21/2015ACM IMC’1424

Packet Capture in the advanced mode

• The buddy-group-based offloading mechanism achieved
significant improved performance

• In general, WireCAP performs better when T is set to a
relatively lower value

WireCAP vs. existing packet
capture engines

R and M are fixed, T is varied

M
R

T

4/21/2015ACM IMC’1425

Packet Forwarding

• WireCAP’s packet forwarding function is capable of
supporting middlebox applications

• The buddy-group-based offloading mechanism can
achieve a significant improved performance

WireCAP vs. existing packet capture engines

4/21/2015ACM IMC’1426

Summary

• WireCAP provides zero-copy lossless packet
capture and delivery services by exploiting
multi-queue NICs and multicore

• WireCAP provides a new packet I/O framework
for commodity NICs in high-speed networks

4/21/2015ACM IMC’1427

Future Work

• Compare WireCAP with DPDK

• Adapt WireCAP for 40GE NICs

4/21/2015ACM IMC’1428

Questions?

WireCAP website:
http://wirecap.fnal.gov

Source code is available:

Please contact Fermilab’s Office of Partnerships and
Technology Transfer (OPTT) <optt@fnal.gov> to obtain a
copy of WireCAP

http://wirecap.fnal.gov
mailto:optt@fnal.gov

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

