The Multicore-aware Data Transfer
Middleware (MDTM) Project

MDTM Research Team

Weniji Wu (P1); P. DeMar, L. Zhang (FNAL)
Dantong Yu (Co-Pl), T. Li, Y. Ren, S. Jin (BNL)

CHEP 2015

April 14, 2015

Problem Space

Multicore/manycore has become the norm
for high-performance computing.

Existing data movement tools are still
limited by major inefficiencies when run on

multicore systems

These inefficiencies will ultimately result in performance
bottlenecks on end systems. Such bottlenecks also impede
the effective use of advanced high-bandwidth networks.

2= Fermilab

A simple inefficiency case ...

Data Transfer Node (DTN) Data Transfer Node (DTN)
NUMA NODE 1 } NUMA NODE 2 NUMA NODE 1 § NUMA NODE 2
EEE |(BEN EEE |EEE

A

N Remote II(E) Access Local |16 Access ' '
oM ; IZH2 IOH1 {1OH2
Interconnect Interconnect —
/ / i 1 Storags
GPU { NIG GPU |NIC

Storage

Scheduling without 1/0 locality Scheduling with 1/0 locality

General-purpose OSes have only limited support for 1/0 locality!

How can we improve?

2= Fermilab

Our solution

* The Multicore-aware Data Transfer Middleware (MDTM)
Project

— Collaborative effort by Fermilab and Brookhaven National
Laboratory

— Funded by DOE'’s Office of Advanced Scientific Computing
Research (ASCR)

— Athree-year research project

MDTM aims to accelerate data movement toolkits on
multicore systems

2= Fermilab

MDTM Architecture

! \ | Access services
= —— -

1
Access
services

Access services

Hardware

MDTM data transfer application (BNL)

* Adopts an |/O-centric architecture that uses dedicated
threads to perform network and disk I/O operations
MDTM middleware services (FNAL)

* Harness multicore parallelism to scale data movement
toolkits on host systems

2= Fermilab

MDTM Hardware Platform

2= Fermilab

MDTM targeted for Data Transfer Nodes (DTN)

=]
. Mem |:| D
To WAN :Networks QPI @
(Front end)
<=>{ Nic_|
; PCIE
To Local:Storage === I
(Backiend) o
-NIC <—>> H
— PCIE

. |Controller kz—>

t PCI-E ™=

S/ Local Disk

System Bus/Switching Fabric

@ QPI X
To WAI\j Networks
Froht end)

o " To Local Storage
H (Baok end)
< NIC
PCIE
k3

Each DTN features one or multiple NUMA nodes.
Each NUMA node features one or more processors of multiple cores.

To WAI\j Networks
(Fro:nt end)

432

= To Locél Storage

(Baok end)

A1

2= Fermilab

MDTM-based DTN Storage & Networking Architecture

A MDTM-based DTN

Directed Connected Storage

Fiber, Infiniband

Local storage

Raid, SSD

Distributed file system
Infiniband, Ethernet

Fiber Channel
Infiniband

=

Mmo™
pPP

/

N\DTM
padiew?

—

ptN

s

Switch/Router

One/multiple 10/40 GE

links to WAN

Switch/Router

MDTM Networking Architecture
* One or more 10/40GE NICs for WAN

* One or multiple LAN links for storage access
Via 10/40 GE NICs, IB adaptors, FC adaptors

MDTM Storage Architecture
* Local storage (Raid, SSD)

* Directed connected storage
- (FC, IB)

* Distributed file system
- (1B, 10/40 GE)

2= Fermilab

MDTM Software

2= Fermilab

MDTM Logical Functions & Modules

|/O-Centric architecture
Parallel data transfer

Data layout preprocessing

Data flow-centric scheduling
NUMA-awareness scheduling
1/0 locality optimization
Maximizing parallelism

10

i Data Transfer User Interface

I Application's Native

E Functions & Modules | Authentication & Access Control

___ 4
\ |
1 . 1
i MDTM-based | Data Transfer Service Interface | i
i Data Transfer o |
1 0 1
i Functions & MOd“]es| Request/data Preprocessing | i
4 H
v b
| Thread/flow Management | E l
4 B
'] = 4 = A E ;
Data Access and Transmission | "g o . = E 0 g i
_______________________ 4 EB5: 2% 4.
------ --ﬁ o w WT---E)
= e B 5
e e

MDTM App Interface

Statistics Store
Thread Load Estimation Qos/Policy Manager

Resource Scheduler

¥ ¥

NUMA access cost
modelling

Admin user input

System Monitor

¥

' 0OS Kernel (and hardware below)

2= Fermilab

How does MDTM works?

An MDTM application spawns three types of threads
1. Dedicated network 1/O threads to send/receive data
2. Dedicated disk/storage |/O threads to read/write disks/storages
3. Management threads for user requests & management functions

The application accesses MDTM middleware services explicitly
via APls

MDTM middleware daemon is launched, which supports two
types of services

1. Query service allows MDTM APP to access system configuration and
status

2. Scheduling service assigns system resources based on
requirements of data transfer applications

2= Fermilab

11

How does MDTM work? (Interaction)

* The data can be static like System
App. App. Layout, which is published once
and the APIs can retrieve it by
calling the synchronous read

function.
M u * The data can be dynamic like Core
m— Workload, which is published
periodically. Our implementation
provide two ways to handling this
case: polling and async reading:

— Polling: use synchronous read
function many times in case of data
changes.

Shared Memor

Publish dynamically — Asynchronous Reading: register the
event of data change; upon event
occur, calling callback function to

invoke a read.

MDTM IPC Design

Publish once N

2= Fermilab

12

How does MDTM work? (Middleware)

CPUs/
Cores

PCl Hubs/
Bridges...

NICs, Disks

Devices
Connection between devices

[le

Each connection associated with
a cost value which reflects
scheduling factors like distance,
traffic throughput and etc.

Each node contains a cost table
to its neighbors

Applying Dijkstra’s Algorithm to
find the lowest cost path from
CPU node to the NIC/Disk node
in question

pick up the core associated to the
lowest cost path

Pros and Cons

more extensive system picture;
scalable; dynamic; more
complicated data structure

MDTM Middleware Scheduling

13

2= Fermilab

MDTM App Year-1/2 R&D Areas

Capacity-based resource pre-allocation and management

Support for both pipelining and striping modes

 Request preprocessing
— Task grouping for affinity binding
— Task sorting for I1/O Optimization
— Improve performance on different storage media

Progress report for data transfer jobs

2= Fermilab

MDTM Middleware Year-1/2 R&D Areas

* Multicore system profiling
» Topology-based resource scheduling
* Interrupt affinity for network 1/0

* Web-based monitoring and management

2= Fermilab

MDTM Current Status & Summary

* In year two of a three year R&D project

— Long list of enhancements targeted in year three
« Alpha version of integrated (app & Middleware) prototype

« Beta version targeted for availability in August

2= Fermilab

MDTM Early Test Evaluation

 Wide-area network links, end-to-end tests

* Performance comparison with GridF TP, bandwidth
captured at ESnet’s edge router

40,0 G

GridFTP

100G

0
15:05 15:10 15:15 15:20 15:25

nersc-thlfinterface/3 1 3/in nersctblfinterface/3 1 3/out

Parallel large file transfers(16 streams, 2TB, 8MB blocks), from SSDs to
/dev/null, with 40Gbps links and 50Gbps aggregate disk bandwidth

2= Fermilab

MDTM Web-Based Monitor & Management

 MDTM monitor and management enable global access
and management of the MDTM servers.

«xMDTM L& Fermilab Qla|®| =
. ninistr e / System / CPU
Y G
A System e VISITORS SITE TRAFFIC SUBSCRIPTORS
@ System>cry 168 il @as% lubin =100 1l
cPU
alt System Load O Live Stats
N r 020 Server Load 0.17
I
nor 0.15 | Processes 449.08
Q MDT™M 010 i | Memory Usage 0.08GB / 63.02GB
| Configurat = Memory Cache 0.22GB/63.02GB
005 '
(] A \
/ / Generate PDF Report a bug
0.00 —— B A A B |
210 220 250 330 340 3:50 400
0% SYSTEM(1M)a 0% SYSTEM (5M) ¥ 0% SYSTEM (15M) ~ " 4% MEMORY™ [124
o CPU Usage ONUMA1 | ONUMA2 ONUMA3 ONUMA4
3 0.40
core0-3.99% core3-0.00%
25 ©corel-0.17% © core4- 0.00%
© core2 - 0.00% 0.30 © core5 - 0.00%
20
15 0.20
10
0.10
5
o A 0.00
3:44 3:46 3:48 3:50 3:52 3:54 3:56 3:58 4:00 4:02 3:44 3:46 3:48 3:50 - 3:54 3:56 3:58 4:00 4:02
20 6
core6 - 0.23% core09 - 0.62%
o core7-0.51% 5 ©corel0-0.42%
15 ©core8-1.07% © corel1 - 0.40%

344 3:46 3:48 3:50 3552 354 3:56 3558 400 402 344 3146 3:48 3:50 352 354 3:56 3:58 400 2402

2= Fermilab

19

Extra Slides

2= Fermilab

MDTM Year-2 Research Areas

Requirements

Performance

Reliability

Deployment

User Interface

Middleware (FNAL)

e Support NUMA-aware
buffer pools

* Automatic memory
hotspots detection

« System profiling

« MDTM Scheduler

« Disk/network performance
optimization

Reliable, robust
middleware services

Security (Policy Enforcement)
GSlI, OpenlD/FederatedID

« Automated config file
generation

 Web-based monitoring &
management

Applications (BNL)

Efficient thread/buffer
management
High-performance event-driven
architecture

Asynchronous I/Os to hide data
access latency

Improved 1/0O scheduling
Improved request
preprocessing

High-performance, reliable data
transfer protocol
Data transfer integrity check

Enhanced security features
Improved SSH
Automatic configuration file

Timely data transfer progress
reporting

How does MDTM work? (MDTMApp)

Storage 1/0O interface:
a) Local disks, b) SAN,
c) parallel FS(Lustre)

Data Transfer Applications/Servers Raw requests

(input from interface)

Request/data preprocessing

OO

Locality-aware groups
(output to task management)

21

Key techniques:

* Metedata access

— Automatic preprocessing for
various type of storages

— Knowledge on storage system
performance via test

* Obtain knowledge on system
layout {cores, disks, NICs, etc)

* File grouping, sorting, load
balancing

* Interface: file systems, storage,
MDTM for layout

* Data structures: lists, sets, layout
table, various statistics

* Communication: none

MDTM APP Preprocessing module

2= Fermilab

Data Access/Transmission Logic
(Application memory layout)

Threads Shared data

) System layout table
Management — _ _ Lock objects OO OO OO
threed - ! T
Datablocklist | [| [|| | | «-e
Preprocessing
>
Sender I

Memor;y‘

Sender

User space

HBA, HCA, Hardware

Data Access/Transmission Logic
(Application memory layout)

Threads Shared data

) System layout table
Management — _ _ Lock objects OO OO OO
threed - ! T
Datablocklist | [| [|| | | «-e
Preprocessing
>
Sender I

Memor;y‘

Sender

User space

HBA, HCA, Hardware

Key Techniques Used in MDTM App

Meta Data Access
— Automatic Preprocessing for various types of storages
— Knowledge on storage system performance test

Awareness of System Layout (cores, disks, NIC,etc)
File Regrouping, File Sorting, Load Balance
Interfaces: file systems, storage, MDTM for layout

Software Design and Data Structures: Object-oriented, lists
and sets, layout table, various statistics

2= Fermilab

	The Multicore-aware Data Transfer Middleware (MDTM) Project
	Problem Space
	A simple inefficiency case …
	Our solution
	MDTM Architecture
	MDTM Hardware Platform
	MDTM targeted for Data Transfer Nodes (DTN)
	MDTM-based DTN Storage & Networking Architecture
	MDTM Software
	MDTM Logical Functions & Modules
	How does MDTM works?
	How does MDTM work? (Interaction)
	How does MDTM work? (Middleware)
	MDTM App Year-1/2 R&D Areas
	MDTM Middleware Year-1/2 R&D Areas
	MDTM Current Status & Summary
	MDTM Early Test Evaluation
	MDTM Web-Based Monitor & Management
	Extra Slides�
	MDTM Year-2 Research Areas
	How does MDTM work? (MDTMApp)
	Data Access/Transmission Logic�(Application memory layout)
	Data Access/Transmission Logic�(Application memory layout)
	Key Techniques Used in MDTM App

