
The Multicore-aware Data Transfer
Middleware (MDTM) Project

MDTM Research Team
Wenji Wu (PI); P. DeMar, L. Zhang (FNAL)

Dantong Yu (Co-PI), T. Li, Y. Ren, S. Jin (BNL)

CHEP 2015
April 14, 2015

1

Problem Space

Multicore/manycore has become the norm
for high-performance computing.

Existing data movement tools are still
limited by major inefficiencies when run on
multicore systems

These inefficiencies will ultimately result in performance
bottlenecks on end systems. Such bottlenecks also impede
the effective use of advanced high-bandwidth networks.

2

A simple inefficiency case …

Scheduling without I/O locality

How can we improve?

Scheduling with I/O locality

General-purpose OSes have only limited support for I/O locality!

3

Our solution

• The Multicore-aware Data Transfer Middleware (MDTM)
Project
– Collaborative effort by Fermilab and Brookhaven National

Laboratory
– Funded by DOE’s Office of Advanced Scientific Computing

Research (ASCR)
– A three-year research project

MDTM aims to accelerate data movement toolkits on
multicore systems

4

MDTM Architecture

MDTM data transfer application (BNL)
• Adopts an I/O-centric architecture that uses dedicated

threads to perform network and disk I/O operations
MDTM middleware services (FNAL)

• Harness multicore parallelism to scale data movement
toolkits on host systems

5

MDTM Hardware Platform

6

MDTM targeted for Data Transfer Nodes (DTN)

Each DTN features one or multiple NUMA nodes.
Each NUMA node features one or more processors of multiple cores.

MDTM-based DTN Storage & Networking Architecture

MDTM Storage Architecture
• Local storage (Raid, SSD)
• Directed connected storage

- (FC, IB)
• Distributed file system

- (IB, 10/40 GE)MDTM Networking Architecture
• One or more 10/40GE NICs for WAN
• One or multiple LAN links for storage access

- Via 10/40 GE NICs, IB adaptors, FC adaptors

MDTM Software

9

MDTM Logical Functions & Modules

I/O-Centric architecture
Parallel data transfer

Data layout preprocessing

Data flow-centric scheduling
NUMA-awareness scheduling

I/O locality optimization
Maximizing parallelism

10

How does MDTM works?

An MDTM application spawns three types of threads
1. Dedicated network I/O threads to send/receive data
2. Dedicated disk/storage I/O threads to read/write disks/storages
3. Management threads for user requests & management functions

The application accesses MDTM middleware services explicitly
via APIs

MDTM middleware daemon is launched, which supports two
types of services

1. Query service allows MDTM APP to access system configuration and
status

2. Scheduling service assigns system resources based on
requirements of data transfer applications

11

How does MDTM work? (Interaction)

MDTM IPC Design
12

How does MDTM work? (Middleware)
• Each connection associated with

a cost value which reflects
scheduling factors like distance,
traffic throughput and etc.

• Each node contains a cost table
to its neighbors

• Applying Dijkstra’s Algorithm to
find the lowest cost path from
CPU node to the NIC/Disk node
in question

• pick up the core associated to the
lowest cost path

• Pros and Cons
more extensive system picture;
scalable; dynamic; more
complicated data structure

MDTM Middleware Scheduling

13

MDTM App Year-1/2 R&D Areas

• Capacity-based resource pre-allocation and management

• Support for both pipelining and striping modes

• Request preprocessing
– Task grouping for affinity binding
– Task sorting for I/O Optimization
– Improve performance on different storage media

• Progress report for data transfer jobs

MDTM Middleware Year-1/2 R&D Areas
• Multicore system profiling

• Topology-based resource scheduling

• Interrupt affinity for network I/O

• Web-based monitoring and management

MDTM Current Status & Summary
• In year two of a three year R&D project

– Long list of enhancements targeted in year three

• Alpha version of integrated (app & Middleware) prototype

• Beta version targeted for availability in August

MDTM Early Test Evaluation
• Wide-area network links, end-to-end tests
• Performance comparison with GridFTP, bandwidth

captured at ESnet’s edge router

Parallel large file transfers(16 streams, 2TB, 8MB blocks), from SSDs to
/dev/null, with 40Gbps links and 50Gbps aggregate disk bandwidth

MDTM Web-Based Monitor & Management
• MDTM monitor and management enable global access

and management of the MDTM servers.

Extra Slides

19

MDTM Year-2 Research Areas
Requirements Middleware (FNAL) Applications (BNL)

Performance

• Support NUMA-aware
buffer pools

• Automatic memory
hotspots detection

• System profiling
• MDTM Scheduler
• Disk/network performance

optimization

• Efficient thread/buffer
management

• High-performance event-driven
architecture

• Asynchronous I/Os to hide data
access latency

• Improved I/O scheduling
• Improved request

preprocessing

Reliability
• Reliable, robust

middleware services
• High-performance, reliable data

transfer protocol
• Data transfer integrity check

Deployment
Security (Policy Enforcement)
GSI, OpenID/FederatedID

• Enhanced security features
• Improved SSH
• Automatic configuration file

User Interface

• Automated config file
generation

• Web-based monitoring &
management
P k i

• Timely data transfer progress
reporting

How does MDTM work? (MDTMApp)

MDTM APP Preprocessing module

21

System layout table
Lock objects

Data Access/Transmission Logic
(Application memory layout)

Management
thread

Sender

……
Sender

Reader

……
Reader

Memory

Preprocessing
thread

Logger

Threads

……
……Data block list

Shared data

Kernel space
User space

HBA, HCA, Hardware

Various kernel data structures, file descriptors,
sockets, queue pairs, etc

System layout table
Lock objects

Data Access/Transmission Logic
(Application memory layout)

Management
thread

Sender

……
Sender

Reader

……
Reader

Memory

Preprocessing
thread

Logger

Threads

……
……Data block list

Shared data

Kernel space
User space

HBA, HCA, Hardware

Various kernel data structures, file descriptors,
sockets, queue pairs, etc

Key Techniques Used in MDTM App
• Meta Data Access

– Automatic Preprocessing for various types of storages
– Knowledge on storage system performance test

• Awareness of System Layout (cores, disks, NIC,etc)

• File Regrouping, File Sorting, Load Balance

• Interfaces: file systems, storage, MDTM for layout

• Software Design and Data Structures: Object-oriented, lists
and sets, layout table, various statistics

	The Multicore-aware Data Transfer Middleware (MDTM) Project
	Problem Space
	A simple inefficiency case …
	Our solution
	MDTM Architecture
	MDTM Hardware Platform
	MDTM targeted for Data Transfer Nodes (DTN)
	MDTM-based DTN Storage & Networking Architecture
	MDTM Software
	MDTM Logical Functions & Modules
	How does MDTM works?
	How does MDTM work? (Interaction)
	How does MDTM work? (Middleware)
	MDTM App Year-1/2 R&D Areas
	MDTM Middleware Year-1/2 R&D Areas
	MDTM Current Status & Summary
	MDTM Early Test Evaluation
	MDTM Web-Based Monitor & Management
	Extra Slides�
	MDTM Year-2 Research Areas
	How does MDTM work? (MDTMApp)
	Data Access/Transmission Logic�(Application memory layout)
	Data Access/Transmission Logic�(Application memory layout)
	Key Techniques Used in MDTM App

