

[bookmark: h.hqwvrlo5vdnw][bookmark: _GoBack]Diversity in Computing Technologies and Strategies for Dynamic Resource Allocation

Introduction
The HEP processing challenge
The Grid Allocation Model
The HPC Allocation Model
The Cloud Allocation Model
Resource Provisioning
Economic model
Storage
Networking
On-demand Services
Virtual Facility
Community Solutions
Resource Allocation Models
Summary & Outlook

[bookmark: h.4zx5v5e5i85x]Introduction

High Energy Physics (HEP) strives to develop a detailed mathematical understanding of nature at the smallest elementary level. It’s science is based on the interplay between the theory framework that describes elementary particles and elementary forces between them; and the experimental detection of particles and measurements of their interactions. It calls for probing nature in ever increasing detail to unlock the last mysteries of our universe.	Comment by gabriele.garzoglio: I think that we can shorten this: our audience should be aware of HEP
Also called elementary particle physics, its experimental results are based on the analysis of many individual detector measurements in comparison to corresponding simulations that are based on the current understanding of the theory. Because of this, HEP was and is traditionally a very data intensive science discipline.

We expect that the future will see increases in number and complexity of recorded particle interactions and corresponding simulations. Using the example of the LHC [reference], the second data taking period will increase the center-of-mass energy and instantaneous luminosity significantly [reference]. In addition, the LHC experiments will collect a higher rate of particle interactions to maximize their physics reach [reference]. This translates into increasing CPU resource demands that are needed to perform the simulation and reconstruction of these particle interactions. In the future, we will have to answer the question of how we can provide access to sufficient CPU capacity to be successful in our physics research. We call this the capacity question.

Experience from the LHC also showed that these CPU resource demands are not constant over time. They vary significantly with external triggers like for example the operation schedule of the collider, the conference schedule and vacation schedule. A computing model that adapts to the varying demand is generally called “elastic”. In the future, we will have to answer the question of how to introduce more elasticity into the resource allocation. We call this the elasticity question.

In this paper, we want to discuss our view on solutions for the capacity and elasticity questions. We want to look at the way HEP is currently provisioning CPU resources using the Grid and look at the new technologies and providers in the form of Clouds and HPC machines.

[bookmark: h.kmrx1ojeqcfq]The HEP processing challenge

In general, the HEP processing challenge is trivially parallelizable. The simulation and/or reconstruction of individual particle interactions can be treated separately because the processing of one interaction does not need input from the processing of another interaction. It is one of the best examples of the High Throughput Computing (HTC) paradigm [reference: https://wiki.egi.eu/wiki/Glossary_V1] “that focuses on the efficient execution of a large number of loosely-coupled tasks.”

In its simplest form, a single batch system with access to worker nodes to execute HEP applications is sufficient to realize the HTC paradigm. In most cases, these were installations hosted by universities or research institutes that handled access and support locally. With increasing demand of the community, the need to access more and more resources that are also distributed across locations and administrative boundaries arose. The Grid provided the necessary tools and services to provide easy access to a diverse group of researchers to distributed resources. Different groups of researchers are organized in virtual organizations (VOs). Computing installations at universities or research institutes joined the Grid by allowing all users of a VO to execute applications on their local resources, therefore building a trust federation of computing resources. These so-called Grid sites defined the list of VOs that are allowed access to their local resources. Sites are pledging amounts of their resources for individual VOs, therefore formalizing resource sharing at individual sites. Pledged resources not used by a VO can be used by other VOs and are called opportunistic resources.

The Grid is very successful and for example enabled the LHC experiments to successfully fulfill all computing demands for the first LHC run. It is though based on batch systems which utilize directly worker nodes installed with a specific OS. New developments, especially in industry, used virtualization to establish a new resource sharing model, called the cloud [reference]. As described later, the cloud replaces the batch system with a system to instantiate virtual machines on the physical hardware of the site and give access to the virtual machine. Running cloud middleware on sites similar to Grid sites would face similar problems than what the Grid solved with the trust federation, and are called community clouds. Industry picked up the cloud paradigm and developed a business out of it. The so-called commercial clouds follow a pay-as-you-go model, where all resources are strongly accounted and a customer pays for what was used. Their business models promise near-infinity capacity and therefore could provide the needed elasticity discussed before. In addition, excess unused capacity not rented out can be given to customers at much lower prices through a bidding process in the spot price market. All over all, commercial clouds follow an economic model to provide access to CPU resources.

A third new resource provider opening up for HEP applications are HPC installations. HOC stands for High Performance Computing [https://wiki.egi.eu/wiki/Glossary_V1 reference] and focusses originally on the “efficient execution of compute intensive, tightly-coupled tasks”. They can though under certain circumstances execute HEP applications which are following the HTC paradigm. In recent time, the usage of HPC installations becomes more and more easy. HPC installations allocate resources to their users differently than traditional Grid resources and Cloud resources. Individual researchers or small groups of researchers are granted access to HPC installations through and allocation process. A peer review committee considers proposals designed more for individual researchers than large collaborations. In the end, allocations in time and capacity on HPC installations are awarded to successful proposals whose researchers then get access.

Table X shows an overview of the tree resource provider types we think will be most relevant in the near-term future to provide sufficient CPU capacity and additional elasticity in our field.

	Grid
	Cloud
	HPC

	· Virtual Organizations (VOs) of users trusted by Grid sites
· VOs get allocations ➜ Pledges
· Unused allocations: opportunistic resources
	· Community Clouds - similar trust federation to Grids
· Commercial Clouds - Pay-as-you-go model
· Strongly accounted
· Near-infinite capacity ➜ Elasticity
· Spot price market
	· Researchers granted access to HPC installations
· Peer review committees award Allocations
· Awards model designed for individual PIs rather than large collaborations

	Trust Federation
	Economic Model
	Grant Allocation

In the following, we would like to discuss the three resource provider types with emphasis on how we can use them with our HEP applications, how they can be transparently integrated into our currently Grid-based setups. As the allocation models of the three resource providers are rather different, we will ask how these can be married to support HEP needs.

[bookmark: h.enm12u6tgzfg]The Grid Allocation Model

The Grid is based on a trust federation of resources as mentioned above. It allows transparent access to a vast amount of resources for large groups of researchers organized in collaborations that can contain many thousands of collaborators. The Grid is very successful. The prime example being the Worldwide LHC Computing Grid (WLCG) [reference] which allowed the LHC experiments to rely on Grid connected distributed resources from the beginning of their operation.

The Grid infrastructure is based on batch systems that are reachable through Grid systems and services. This means for executing HEP applications, a task is split into smaller parts which can be executed in parallel and the Grid provides ways to submit these jobs transparently to a large amount of resources.

Grid submission evolved from the early days of the Grid and most HEP VOs are now using pilot-based submission infrastructures. Instead of pushing a job directly or through a workload management system into the Grid interfaces of the sites, the pilot-based submission infrastructure uses lightweight jobs called pilots without direct connection to the actual job of a task to claim a Grid slot on a worker node. After checks, the pilot signals the submission infrastructure that it is ready to receive work and pulls work in form of a job of the task. We call this the pull era of the Grid. This approach allows for very late binding of the processing resource to the workload or job, enabling the system to control scheduling and prioritization on a global scale. It reduces the failure rate of Grid job submission dramatically, because the job execution only starts after the resource was successfully claimed, circumventing frequent failure modes that required resubmitting jobs when pushing the jobs into the sites. What will become important later when we discuss the Cloud and HPC resource providers, the pilot-based submission infrastructures allow for easy integration of even non-Grid based resources. One simply enables a resource to run in a pilot-like mode and pull work. But the infrastructure has generally more components than a push-based model and therefore the debugging can be more complex.

A good example for a pilot-based submission infrastructure is glideinWMS based on HTCondor [reference]. Fig. X shows a schematic view of a glideinWMS submission infrastructure complete with HTCondor submit nodes holding jobs of tasks; the VO frontend that monitors the submit nodes and initiates pilot submissions to the sites via the factories; and the central manager that connects pilots that successfully claimed resources with jobs.

[image:]

We particularly like glideinWMS because it implements the following concepts very well:
1. The provisioning system (factories and central manager) can be shared amongst different communities and VOs.
2. Separate overlay pools of resources can be provisioned per community.
3. Each community has full control over their policies and priority settings within their pools.

The flexibility and ease-of-use of pilot-based submission infrastructures will become important when we now look at how we include Clouds and HPC installations into the resource mix.

[bookmark: h.hdbbc2ey72sa]The HPC Allocation Model

HPC installations have a long history in HEP, they are used for more HPC-like applications like Lattice QCD [reference] and Accelerator Modeling [reference]. Recently the interest on both sides, the user communities and the HPC installations, increased to also be able to run traditional HEP framework applications usually restricted to Grid-like resources. If the HPC installation is using an Intel-based architecture, it is possible to execute HEP applications unmodified. While for non-Intel-based architectures, the cross compilation of HEP applications using native compilers is necessary.

In the following, we want to give examples for each the Intel-based and non-Intel-based architecture case.

In the Intel-based architecture case, CMS received an allocation at the San Diego Supercomputer Center (SDSC) in 2013 to re-process specific datasets (for the expert: HTMHT and VBF) [reference: ucsdnews.ucsd.edu/pressrelease/sdscs_gordon_supercomputer_assists_in_crunching_large_hadron_collider_data]. SDSC operates a wide range of Intel-based HPC clusters ranging from ~10k to ~50k cores. CMS took part with a proposal in the allocation award procedure. Individual principal investigators (PIs) submit proposals and a committee meets every three months to award allocations in form of CPU hours. Successful proposals have one year to use the awarded allocation. Follow up proposals can be submitted. They need to demonstrate the scientific impact of the previous research. In this case, CMS used pilots submitted through ssh login nodes at SDSC and used it’s allocation successfully. There is already progress on follow-up proposals. As a direct reaction to the CMS/HEP use case, SDSC is preparing to give access to its HPC installations through Grid Compute Element, making it even easier to integrate SDSC resources into pilot-based submission infrastructures.

In the non-Intel-based architecture case, Atlas was able to utilize the PowerPC-based Mira Supercomputer at Argonne National Laboratory [reference]. The machine has a similar allocation award procedure than SDSC. Proposals are required to demonstrate enabling new science through the usage of Mira. Atlas cross-compiled the Alpgen event generator [reference] using the IBM XL compilers for Mira and effectively using MPI to run N instances of Alpgen in parallel [reference to CHEP talk]. As shown in Fig. X, Mira’s almost 800k cores are subdivided into nodes and Mira’s minimal partition size is 512 nodes. This allows Atlas to use backfill queues to run Alpgen jobs. Currently, jobs are submitted manually through a custom workflow system. In the future, the goal is to integrate Mira into the Atlas pilot-based submission infrastructure.

Both examples show that the usage of HPC installations for traditional HEP applications is possible and we can expect more usage examples in the future.

[bookmark: h.81z7s5cp3fs9]The Cloud Allocation Model

The computing activities of experiments are not constant and, rather, follow peaks and valleys of demand. These are influenced by external factors, such as instrument operations, social events, conferences, holiday festivities, etc. Until recently, the only feasible approach to satisfy these peaks consisted in building computing centers at National Laboratories and Universities and procuring enough computing resources there. This spurred the creation of resource federations and sharing agreements, embodied by Grid consortia, so that the large available off-peak capacity could be utilized opportunistically by all members of the federation. As the needs for peak capacity grows, however, this strategy is becoming cost-prohibitive.

[image:]

[image:]

The emergence of Commercial Clouds provides a new solution to this problem. Resources have a cost only when utilized, as if they were rented rather than owned. Commercial providers offer seemingly-infinite resource capacity available on short time scales. As such, the cost of computing time is the same when renting one computing resource for 1,000 hours or 1,000 resources for one hour.
There are several challenges for Cloud computing to become competitive with the Computing Centers managed by the scientific community, in terms of cost, reliability, and ease of use. Several HEP experiments and facilities, including Atlas, CMS, STAR, NOvA as well as BNL and Fermilab, are working with Cloud providers to address these challenges. Currently, the areas of work include the development of realistic economic models, resource provisioning, networking, storage, and on-demand services.
[bookmark: h.cf4570n56dp8]Resource Provisioning
Commercial Cloud providers implement proprietary application programming interfaces (API) to enable the provisioning of resource. To avoid vendor lock-in, many HEP communities rely on commonly used job management layers, such as HTCondor, to abstract access to different Cloud providers. HTCondor enables access to different clouds by supporting the proprietary interfaces of a few Cloud Providers as well as the Amazon EC2 interface. This is a widely emulated interface that enables access to several providers, although with limitations, considering that it is not a standardized interface.
This strategy makes provisioning technically possible, but does not alleviate the challenge of balancing demand for computing with cost. Two major challenges for our current technology include
1. the ability to expand and contract provisioned resources to control cost while the job queue is full;
2. fully integrate market price-based solutions to provision Virtual Machines.
The first challenge is mainly related to policy. The priority of computational activities among scientific communities are not always straight forward. Some activities may be urgent but considered low priority. A combination of urgency and priority drives the policy to expand and contract the pool of resources to balance costs.
For the second challenge, a popular example of a market-based provisioning solution is Amazon Spot pricing. The user bids the maximum price that he is willing to pay for the resource. Until the market price is below the bid, the user has access to the resource. When the market price goes above the bid, the resource is retired within a few minutes. The price varies following the demand for resources on the market.
Many HEP workflows are good candidates to use Spot pricing. The Grid, in fact, implements similar preemption mechanisms when users run on opportunistic resources i.e. resources made available on the Grid, but not owned by the job submitter. To run effectively on the Grid, most applications had to be made already resilient to preemption. Considering that jobs are generally submitted in bulk as part of a computing campaign, the commonly used mechanisms to achieve that include
· checkpointing: the global state of the computation is saved and resumed when the failed / preempted jobs are relaunched (e.g. SAMWeb dataset consumption database)
· stateless jobs: jobs in a campaign are all equivalent to each other (e.g. some Monte Carlo production) and can be simply relaunched
· minimal unit of computation: applications process very shorts unit of computation (e.g. 1 event for 10 minutes), thus relaunched computations have minimal duplication (e.g. Atlas Event Service)
[bookmark: h.jeyz30ynnkp0]Economic model
With commercial Clouds becoming main stream, computing centers at Laboratories and Universities have the choice to dynamically expand their resource pool. The decision of when to expand the pool depends on several factors, including cost. To properly manage the size of the pool, computing centers face the challenge of fully understanding their costs and compare them with the commercial providers.
Preliminary cost estimates to run a “modern” computing core for one hour at National Laboratories, such as Fermilab and Brookhaven, are about $0.03 and $0.04 respectively. For comparison, a basic virtual machine with 1 core at Amazon (m3.medium instance) cost $0.07. The same instance, however, cost as low as less than $0.01 using Spot pricing.
In addition to understanding the local cost for computing, however, predicting the costs of Commercial Cloud resources can also be a challenge. To develop an understanding of such costs, we have run computational campaigns with real physics applications on Amazon Web Services (AWS). In 2014, we have run a few Monte Carlo simulation campaigns for the NOvA experiment. The largest consisted of 3,300 jobs distributed between AWS and the local Fermilab Cloud infrastructure (FermiCloud) for a scale of 1,000 jobs each. On AWS, we used dual core virtual machines (at $0.14 / h) running two jobs per machine. The total cost was $449, split between computational charges for $398 and data transfers for $51. Limiting the amount of egress data transfers e.g. by limiting auxiliary information such as log files, was key to contain that cost. Since then, however, AWS has made available to research institutions special data egress fee waivers (see “Networking”) to further reduce those costs (see par “Networking”).
[image:]
To continue the integration of our job management infrastructure with AWS for the NOvA experiment, AWS has awarded an educational grant to Fermilab. The goal of the grant is to demonstrate the continuous availability of the resources at AWS throughout a year. We plan to run data reconstruction for the 2014 / 2015 NOvA dataset for raw data and Monte Carlo in 16 computational campaign for a total of 2M CPU hours. As our capabilities improve, we aim to demonstrate that using the spot pricing market for this type of physics computation is cost effective and as reliable as the Fermilab resources.

[bookmark: h.hy1eqlpmqxrp]Storage
The effective utilization of compute resources depends on the effective handling of data. In general, locality of the data is known to make a big difference. This is especially true when using spot pricing, where prices change continually and jobs can be evicted with a notice of a few minutes. In particular for medium to large size input data (e.g. above 1 GB per job), the latency of transferring the input data may significantly delay the start of a jobs and, thus, its successful termination.
Abrupt termination is also a concern with spot pricing for output data transfer. Storage locality, however, is not always more cost effective, according to our model. We consider the case where multiple jobs are submitted to the Cloud for execution and terminate approximately at the same time. We want to transfer the output data back to the home institution. We evaluate two strategies:
1. Jobs attempt to transfer data directly to the remote storage at the home institution; the storage system will accept the data transfer with a certain limit on the ingress bandwidth. If data transfer is coordinated among all jobs, some jobs will transfer the data and then terminate, while others will wait in a queue. Irrespectively, virtual machines will be idle i.e. blocked on IO without running any computation for as long as the data transfer last. In addition to the data egress charges, running these idle virtual machines will contribute to the total cost.
2. Jobs transfer data to local storage at AWS (Simple Storage Service - S3). Because of the high level of scalability, all jobs will be able to transfer the data at the same time using high-bandwidth. The full dataset can be transferred directly from S3 to the home institution later on e.g. initiating the transfer from the home institution. The data egress charges will be the same as in the previous strategy. This time, however, we pay for storing the data in S3, instead of idle virtual machines.
Depending on the bandwidth available to the storage system at the home institution, the number of running VMs and the amount of data to transfer, one strategy may be more cost effective than the other. For example, Let’s assume to run 1,000 jobs on 1,000 VMs of type m3.medium ($0.07/h), each transferring 1 GB of output. The cost of storing the 1 TB data in S3, if it takes a month to initiate the transfer back to the home institution, is about $30 and the cost of data egress is $120. This latter is the same irrespectively of the strategy. Adding related costs, such as the costs of PUT and GET requests, the total cost would be approximately $155. A portion of this cost can be reduced by initiating the data transfer faster than one month and erasing the data from S3.
In comparison, if we transferred the data directly from the VMs to the home institution, the cost would vary (statistically) depending on the bandwidth to storage. For example, for 20 Gbps, the cost of idle VMs would be $8 for a total of $128; for 2 Gbps the cost would be $78, for a total of $198.
We are preparing to measure the cost of these strategies in realistic testbeds in the summer 2015.
[image: Screen Shot 2015-04-03 at 6.17.46 PM.png]

[bookmark: h.kuybxcgv4gdi]Networking
In the Grid model, participating institutions are connected through scientific networks, such as Internet2 and ESNet. These organizations absorb the cost of data transfer and, as such, this cost is hidden to the end users. This often leads to a feeling among the user community that network is a “commodity”, rather than a resource.
With the transition to the Cloud model, many of these costs are exposed. Commercial Cloud providers typically allow data ingress for free, but charge for data egress and some internal data transfers. Historically, however, the data egress fees have acted as a barrier to the adoption of Cloud computing for many scientific communities.
Over the past year, the scientific networks have worked to improve their network peering with AWS. Absorbing much of the cost of data transfer, they are in the unique position to negotiate data egress fee discounts for the scientific community. In particular, Internet2 and ESNet have negotiated a data egress fee waiver with AWS, by which data transfers costs below 15% of the total monthly cost are waived. As these agreements are new, some of the contractual terms are still being refined to make this an opportunity for both universities and national laboratories.
Together with cost reduction, the scientific networks are working to improve the connectivity to AWS. Today ESnet peers with AWS at three AWS zones in Seattle, Sunnyvale (CA), and Ashburn (VA). Using the default routed network, this peering allows for a connectivity of 10 GE at each point, with a planned 100 GE peering at Seattle to come in the summer. In addition to the general routed network, AWS offers a DirectConnect service, whereby network ports are reserved for certain sites. Through a pilot, this allows for a dedicated peering of 10 GE with BNL at Ashburn and of 20 GE (2x10GE) with ESNet at Seattle. This reserved bandwidth can be exploited by setting up dedicated circuits between the site and AWS.
[bookmark: h.qpwb4wvssbaj]On-demand Services
Scientific computations rely on several dependent services, such as databases, software distribution, storage, job submission queues, etc. Some of these services, such as the ones offering data caching, are known to improve the efficiency of the computation when local. As the scale of the scientific workflows running on Cloud platforms increases, the ability of instantiating dependent services also on the Cloud becomes important to improve the efficiency of the computation and, ultimately, reduce cost. We refer to these services, which are instantiated when scientific workflows are executed on the cloud, as on-demand services.
Through our R&D programs, we have started to experiment with on-demand services such as software distribution and job submission queues. We use the CERN Virtual Machine File System (CVMFS) [reference] for software distribution. The system relies on a network of software repositories made available to remote clients through the HTTP protocol. As such, the system can scale through the adoption of web caching services, such as Squid.
Our early attempts to run scientific workflows on AWS used software distribution caches at Fermilab. The lack of cache locality at AWS caused high latencies in the remote access of the software through the Wide Area Network. In addition, it caused a large number of access requests directed at Fermilab, rather than at a local cache, and overwhelmed the Fermilab distribution system.
To overcome these limitations, we have developed mechanisms to elastically scale web data caching services and use them for software distribution. In short, we run a Squid server in a virtual machine at AWS. The server can be accessed through an Elastic Load Balancer, which defines a single entry point to the data caching system for the clients. The network traffic on the Squid VM is monitored through an AWS service called “Autoscaling Group”. As the traffic increases because of demand, the autoscaling group can elastically instantiate additional Squid servers. These, after their cache is loaded, enable the automatic scaling of the data distribution service. In addition, the autoscaling group can retire Squid servers as the load to the system decreases below a set threshold.

[image:]

Since web data caching is a service with a limited, generally disposable, state, the automated scaling of the service is relatively straight forward. More care had to be taken for the automated scaling of job submission queues. In particular, the scaling down of the service required for the system to wait the draining of the user jobs, a process that may take days.
[bookmark: h.495pcfwpjed3]Virtual Facility

The elasticity promised by commercial cloud providers can not only be used to the benefit of VOs or science communities. Also traditional Grid sites can benefit from it.

In what we call the virtual facility approach, a Grid site would not anymore provision all needed resources through physical hardware that needs to be operated and maintained in own data centers. Sites could fulfill their users needs through a combination of owned and rented resources, therefore alleviating the effect of having to provision for peak demand and be more elastic and cost effective. Sites would develop a costing model for physical resources and commercial cloud resources and could optimize costs by choosing the balance between them. The agreement between users and sites about service levels of resources would stay the same, the site would need to make sure, that their usage of cloud resources would yield in the same service levels as own physical resources. This would include investigating storage setup solutions and on-demand auto-scaling service solutions for clouds as discussed in the previous chapter. In the end, sites could provide complete solutions for their users without them having to care if their jobs run on physical or rented hardware, while optimizing costs for the sites themselves.

As a side remark, if sites invest in this virtual facility approach, the step from providing resources both on owned and rented resources to dynamically creating cloud resources for users that don’t have the knowhow themselves is not big.

[bookmark: h.nmgtmjh2qjl3]Community Solutions

After having discussed three different resource providers and how they can be integrated to run HEP applications, one should not forget that a fair amount of technical knowledge and effort is needed to utilize these providers efficiently and at high scale. Large VOs like the LHC VOs have own teams of experts that take care of integration and operation. But not every VO can afford to run such sophisticated operations. There are solutions that provide the community at large, even beyond HEP, with the capabilities, services and infrastructure to execute their applications at scale on Grids, clouds and HPC installations. We would like to describe one community solution in the example of the Openscience Grid (OSG) [reference].

The Openscience Grid was created out of the goal to share the LHC experiments’ Grid infrastructures and other Experiment/University/Lab infrastructures in the US. The emphasis was from the beginning not only to cover HEP but go beyond and enable the whole science community in the US to benefit from the expertise of the LHC experiments to run HTC applications at high scale.
The community effort is based on the premise that all resource owners that connect to the OSG want to share their resources to maximize the benefit to all without having to give up control of their local resources. Major clusters at Universities & National Labs connect to the OSG and control the sharing policies locally.

The goal of OSG is that researchers use a single interface to all kind of resources: resources they own; resources others are willing to share; resources that they have an allocation on (for example HPC installations); resources they buy from a commercial (cloud) provider. OSG focuses on making this technically possible.

OSG operates a shared production infrastructure based on glideinWMS to enable researchers to easily and efficiently run on all kinds of resource providers called the open facility. OSG maintains and advances a shared software infrastructure to enable researchers to use common tools and techniques to execute their applications at scale on the OSG called the open software stack. And OSG spreads the knowledge across researchers, IT professionals and software developers creating and open ecosystem for smaller and small research groups to benefit from the advances of distributed high scale HTC application execution.

Fig. X shows the schematic setup of the OSG open facility, where different user and user groups are provided with facilities tailored to their needs to connect to the OSG.

[image:]

Single Principal Investigators (PIs) can benefit from the OSG connect service, where OSG operates a login node for the researcher and provides disk space and software repository. Through the common submission infrastructure, OSG assist the PI to provision resources across the OSG facilities. A second incarnation of the OSG connect service exist, tailored for researchers that have been redirected to the OSG from HPC allocation committees (XSEDE [reference]).

Universities and laboratories that are connected to the OSG have the possibility to also benefit from unused capacity at other OSG facilities by moving excess local load to the OSG, as well through HTCondor and glideinWMS, therefore virtually expanding their local resources.

LHC experiments and other large VOs use the OSG directly by operating OSG sites and using them through their own submission infrastructures, but gaining access to other OSG facilities as well.

The premise of OSG to share resources to maximize the benefit to all works out well for all OSG stakeholder and we think the OSG is a good example how to create an open ecosystem integrating all kinds of resource providers into a coherent and easy to use infrastructure.

[bookmark: h.6ubebwb7c5i]Resource Allocation Models

All three presented resource provider types have very different resource allocation models. The Grid allocates resources through pledges given to VOs at sites. These pledges are constant over time and usually given for a year at a time and then renewed. Commercial clouds follow an economic model where users pay only for what they use. There is no predefined time structure, provisioning 1 CPU for 1000 days costs the same as 1000 CPUs for 1 day. HPC installations grant allocations on their facilities in form of CPU time that can be used in a given time frame.
All three allocation models have different time frames and different ways of defining the amount of resources allocation (Grid: job slots, Cloud: cores, HPC: CPU time) and also the bureaucratic domains are different.
We don’t have an immediate solution on how to seamlessly integrate these resource providers and also newer ones that have not been mentioned here, but we think it is important to bring up the issue and pose the question to the community to start the discussion and develop solutions on how to combine these resource allocation models.

[bookmark: h.etjbqjwqdcvk]Summary & Outlook

In this paper, we tried to show in concept and example that the resource landscape in HEP and beyond is changing.
The Grid is being augmented by new resource providers and we discussed commercial clouds and HPC installations.
The Grid remains to be the core of the resource landscape because it provides the means to execute workloads on all old and new resource providers using pilot-based submission systems like glideinWMS.
The usage of commercial clouds is posing significant integration challenges that many are currently working on and we are excited to observe the progress in the future and the solutions that will be developed. We think the community should look out for when regular commercial cloud resource become financially competitive to owned resources and investigate how the spot price market based cloud resources could be be used best.
HPC installations are being used for specific problems in HEP computing but are also starting to being used for general use. We are equally excited to observe the progress in the future here.
We discussed the concept of the virtual facility combining owned and rented resources to optimize costs and provide more elasticity for the facility’s users. We think this concept has a lot of benefits for a facility and we expect to hear reports from implementations and modifications to the concept in the future.
And we discussed the community solution in the form of the Openscience Grid, which enables the whole community from individual researchers to large VOs to benefit from the advances in distributed large scale HTC application execution. We think the approach of the OSG is an excellent example how the advances coming from the Grid world combined with new resource providers can be easily utilized by a larger community. Especially to create an open ecosystem where smaller parts of our community are provided with services and infrastructure to do their work on the OSG without having to invest a lot of effort themselves is a big help and enables many more researches to execute their applications at high scale.
In the end, we discussed that although we can use the old and new resource providers transparently through our submission infrastructures, the allocation model is sufficiently different that new solutions need to be found and we posed the question to the community to investigate this in the future.

Plenary Proceedings	12 of 16
v0.1
image1.png
Grid

=2

Execute Node
Submit Node Central Manager Execute Node
Submit Node - Execute Node
Submit Node Execute Node

.,

2 a e

image2.png
Re-reconstruction of Data in 2011: Number of Events per Month
4,000,000,000

2010 ReReco

W USER NonPrompt Number of Events, total ~0.73 B

[RAW-RECO NonPrompt Number of Events, total ~1.03 B
[AOD NonPrompt Number of Events, total ~5.37 B

B RECO NonPrompt Number of Events, total ~7.89 B

3,000,000,000 nggs ReRecos First full

2011 ReReco
2,000,000,000
1,000,000,000 I
0

CERN seminar, 13 December 2011:
“tantalizing hints” of ~125 GeV boson in many channels

March 2011 [Jf]

April 2011
July 2011

August 2011 -

May 2011
June 2011
September 2011 I

February 2011 [JJJ|

January 2011

October 2011 -

\November 2011

December 2011

image3.png
CMS Analysis Users Per Week at Tier-2 Sites

500

Holidays 2012

Summer Conf Winter
2012

=3
o =3 o
™

oap Jed siesn JouRsIa

Holidays 2011

Holidays 2010

Holidays 2013

Holidays 2009

TT1-80-¥%102

TZ-v0-v102Z

0E-ZT-ETOZ

Z0-60-ET0Z

ET-S0-ET0Z

TZ-T0-ET0Z

T0-0T-Z102Z

T1-90-Z102

0Z-Z0-Z102Z

TE-OT-TT0Z

TI-LO-TTO0Z

TZ-E0-TT0Z

6Z-TT-0T02Z

60-80-0T02

61-¥0-010Z

8Z-ZT1-600Z

L0-60-600Z

Week Ending

image4.png
3300 jobs total
525 m3.large

1200

1 hour

Total cost $449

1000

800

600

400

200

052
eviL
oL
62:L
L
ShiL
80°L
10:2
59
L9
or'9
€€'9
99
619
29
50:9
8G'S
166
bag’]
186
0€'g
€2
9lig
60'S
206
Sy
a4
Wy
ey
72y
0z
(184
90y
65°€
(423
Sv'e
8e'€
€€
4
AR
oL
€0'€
96:¢
6v'C
f4 44
See
82T
1z

image5.png
Storage
Bandwidth

PAY FOR
IDLE VM

VM
Transferring
Data...

y
A
| 4
Site
Storage
Wamng to
|| Transfer Data
ﬂ -) -

Storage
Bandwidth A PAY FOR
DATAIN
S3

a

AWS S3

Site

Storage AllVM AllVM
Transferring Transferring
Data... Data...

image6.png
Amazon SNS

doudwatch

e

Autoscaling
group

uid servers
Availability Zone 1

Squid servers
Availability Zone 2

Elastic Load Balanang

image7.png
OSG-Connect Duke-Connect

)

XSEDE N
- -

BakerLab

OSG-Direct
Users

Virginia Tech 18I

