
Production Operations
Management Service

Requirements Document

Authors: Paola Buitrago, with Robert Illingworth, Marc Mengel
Version: 1.0

Date: 5/10/2015

This document describes the requirements to implement the Production Operations Management
Service to assist Intensity Frontier Experiments and the Offline Production Operations Service
group to manage and monitor Production processing jobs. The tool will allow experiments to fill
requests for data processing or Monte Carlo generation. Analysis tasks are explicitly out of the
scope.

Production Operations Management Service

Revision History

Document History
Version Date Comments
1.0 May 10, 2015 Initial version
1.1 June 5, 2015 First released version
1.2 June 30, 2015 Sign-off version

Table of Contents

Updated: 6/30/15 Requirements Document Page 2 of 13

Executive Summary
The Production Operations Management Service will allow the Offline Operation Service group
to provide a more comprehensive and automated service for Intensity Frontier experiments. It
will assist in the submission, monitoring and triaging of errors of production processing tasks. It
will also work as an interface between the OPOS group and the experiment by providing the
interface to place a new processing request and monitor the advance of a particular workflow, as
opposed to submitting requests through SNOW.

Requirements Summary
The Production Operations Management Service is expected to assist in the different stages of
processing a production request for an experimenter. Starting with the registration of a new
request, approval, pre-launch checks, submission, monitoring and failure triage.

Assumptions, Risks, Dependencies
The system needs to inter-operate with SAM and jobsub; however it should interact with them
through an abstraction layer so as to not be overly dependent on them. It should also use use
existing experiment-specific job launch scripts to maintain experiment internal bookkeeping.

The system should not duplicate information or data available in already existing monitoring
systems such as Gratia and FIFEmon. In this sense, the system would need to use the same
sources of information of these systems or keep a summarized version from their data.

It is desirable to have the selected solution be accessible from multiple platforms including Mac,
PC and Linux platforms.

Scope of the Project
The scope of this system is to allow the OPOS Group to manage and monitor their data-analysis
and MC-processing jobs, and for the experiments to request processing tasks and MC event
generation. It also will maintain information to assist in diagnosing/triage-ing job failures to
route failed job information either to the experiment or appropriate service managers.
Non-production jobs from experiment users are explicitly excluded from the current scope,
however future requests may come to expand this to cover non-production jobs.
Furthermore, this system should not duplicate the project tracking facilities in SAM, nor the
service monitoring features in FIFEMon and Gratia. Rather, this system should refer to data in
those other systems, or possibly keep summarized data from those systems.

Stakeholders
The following stakeholders have been identified:

• Lab management
o Scientific Computing Services Head.
o Scientific Distributed Computing Solutions Head.

• Experiment production groups
o NOvA production group.
o MINERvA production group.
o Minos+ production group.
o Microboone production group.
o Mu2e production group.
o G-2 production group.
o Other experiments, as needed1

• Projects
o Offline Production Operations Service group (OPOS).

• Support personnel
o FIFEmon support team
o REX-DH support team

• Oversight and Review
o NOvA data quality group.
o MINERvA data quality group.
o Minos+ data quality group.

Roles
We define six roles for people who are actively involved in the Production Operations
Management Service:

OPOS operator – A person who is responsible for fulfilling a particular production-processing
request. This person would use the tool to review queued production requests, check request
input information is consistent, initiate a request, monitor its advance, triage any problem and
report back to the experiment.

OPOS supervisor – A person who leads the OPOS group and would monitor in a high level the
progress of the experiment production processing. This person would require the generation of
daily, weekly and overall reports.

Experimenter – A person from an experiment, typically, who is from the production group. This
person can define a new request and register it with the Production Operations Management
Service. He also can monitor the status of his/her experiment production.

1 New experiments will be added as they begin having the OPOS group do
production processing for them.

Experiment approver – A designated person or group of people from an experiment who will
have the ability to approve or reject an experiment request. This person can also prioritize the
experiment’s requests that are still in queue.

Reviewer – A person who may be internal or external to an experiment who is called upon to
review aspects of the processing task executed with the aid of the Production Operations
Management Service. It might include checking data quality or data reproducibility.

Guest – A person non-necessarily related to an experiment production group, the OPOS team or
the supporting team. This person would want to get an overview of how production processing is
doing. This can be a person from the general lab population. We may need to restrict viewing
data by experiment membership.

Service provider – A person who provides support to the Production Operations Management
Service. Service providers include:

• Data handling group.

Definitions, Acronyms and Abbreviations

Task – A task is a discrete processing unit of work, for example “process a single day’s raw
data”, or “generate 10000 Monte-Carlo events for this decay process”. A task may consist of one
or more subtasks. Within a task there’s a dependency between the subtasks – the next subtask
should not be run until the previous dependencies have been completed. A task can be associated
to a particular type of processing: Reco, MC, Calibration, etc.

Subtask - A single subtask may be split into multiple batch jobs.

Task completion criteria – Examples of this include: “the task has completed the number of
MC events requested”, “all the input files have been consumed”, etc.

Campaign – This is a type of task. Example of campaign: “Process all experiment data with
version 9 of reconstruction”, “run all 6 phases of MonteCarlo with specified versions of phases
for a billion events”

Batch – This is a type of task. Small portion of a high level task to be submitted at once. Batches
have a workflow matching campaign, but work on their subset of the data.

Batch task completion criteria – Some examples of batch-level task completion criteria would
include: “output datasets reaching tape”, “output datasets reaching some count as input dataset”,
“check script passing on output data and/or logs” or “experiment check-off saying it is finished”.

Keep Up processing mode – Processing of production data that is done in a periodic fashion.
Typically it would involve daily processing of new available data.

References
The content of this document is based on a series of meetings held between the developing group
of the Production Operations Management Service and relevant stakeholders. The list of
meetings held is:

Requirements gathering meeting
Date Meeting name
03/09/2015 OPOS group requirements gathering

meeting
03/20/2015 CMS operations group requirements

gathering
03/24/2015 Minerva production group requirements

gathering
03/26/2015 Minos+ production group requirements

gathering
03/27/2015 Microboone production group

requirements gathering
03/31/2015 Nova production group requirements

gathering
04/07/2015 Mu2e production group requirements

gathering
04/20/2015 G-2 production group requirements

gathering

Meeting notes and relevant information concerning this project can be found in the Production
Operations Management Service Redmine project:
https://cdcvs.fnal.gov/redmine/projects/prod_mgmt_db

Some documents that also serve as source of information are listed as follows:

Referenced documents
Document No. Document Title Date Author
TBD PUBS: Data

Processing
Software
Framework

Dec 30th, 2014 Kazuhiro Terao

DocDB #5418 OPOS Service Level
Agreement

Jan 28th, 2015 Andrew Norman

TBD Requirements for
Production
Operations
Management

Jan 5th, 2015 Michael Diesburg,
Robert Illingworth,
Andrew Norman

Service

Business Process Flow Diagrams
The workflow to process a production request is depicted in the diagram shown in Figure 1.

Figure 1. Process to fulfill a production request by the OPOS team

The process starts when an experimenter fills a new request using the Service Now system. The
person that fills the request must be a member of the experiment that acts as an OPOS liaison. It
is expected that the request contains at least the following information:

• Files to process - Depending on the tools used by the experiment, this can be defined with
a text file, a sam definition, sam dimensions, among others.

• Scripts - Includes the setup and submission script, and the executable to run in each grid
node. It can also include configuration files depending on the framework and experiment
workflow.

• Expected processing time per file.
• Experiment software release.
• Priority.
• Special requirements: This might include: naming the output files with a special pattern,

setting a special value in the metadata of output files, among others.

Once the request is filled, The OPOS supervisor does an initial check on the request, to make
sure it is in line with the agreed to work and that basic requirements are met, and then assigns the
work to an OPOS operator, who checks if the request is consistent, assisted where possible by

the tool. This includes: checking that the required scripts are in place, the input file sets are
available and correctly defined, the processing won’t lead to undesired issues like duplicated
files, etc. If necessary, the supervisor or operator will require the experimenter to complete the
request information and/or check its consistency. Once the request is approved by the OPOS
staff, what comes next is to actually proceed to process the request. This includes the activities
depicted in Figure 2.

Figure 2. Activities followed by OPOS operator to fullfil a production request.

If the request contains any special requirements, that will be addressed in the first step. Provided
the special requirements have been addressed, the OPOS operator manually creates the dataset or
input datasets to be processed. In parallel, the operator would check, using tools as FIFEmon and
Gratia, whether the grid and some major tools are in good condition to submit. If the grid is too
busy or there is a known problem with one of the major tools, the operator will hold until a
proper scenario for submitting is present. After this, the operator will pre-stage the input files if
needed in order to avoid job inefficiency. Next, actual submission would be done using the
submission script provided by the experiment. Monitoring tools like the condor queue or the sam
station, the operator would monitor the state and progress of the jobs. Once jobs are complete,
condor logs would be fetched and scanned in order to determine if the processing was successful
or not. Next step in the process would be to monitor output files as they are registered with SAM
and taken to tape by an FTS instance. During the whole process, several types of errors can occur
which would require further manual inspection. The OPOS operator will inspect until finding
whether the error was caused by some tool failure or due to some bug in the experiment provided
scripts.

Currently, the process is highly manual and dependent on the OPOS operator which limits the
extend to which the OPOS team can scale in term of the number of experiments on boarded and
number of request handled. The goal of the Production Monitoring Database would be to provide
a tool that will automate several activities in this process and will require low operator
intervention. In the cases where the operator intervention is required, the Production Monitoring
Database is expected to assist and by making the tasks less error prone and less time consuming.

Functional and System Requirements

Task Requirements
The following are the requirements involving the management and execution of
production tasks of different granularity levels.

Number Requirement Source Priority
T1 The solution shall support campaigns, which

may involve multiple dependent
tasks/workflows

POMS Team –
CMS meeting

T2 The solution shall support the following
campaign states: new, pending approval,
approved, running, and succeeded/failed.

POMS Team

T3 The solution shall support tracking batches
including information like sam project
progress, job exit codes, and output files
handled by the FTS.

POMS Team

T4 The solution shall implement a mechanism to
break down campaign datasets into
batch-level datasets.

POMS Team

T5 The solution shall provide an interface to
specify the task completion criteria.

Req-PMD -
01/15

T6 The solution shall support the following
batch-level task states: pending, submitted,
project running (if sam project involved), jobs
completed, batch completed.

POMS Team

T7 The solution shall allow the configuration of
periodic batch-level tasks to satisfy keep up
processing mode.

POMS Team

T8 The solution shall execute tasks
automatically by submitting the required
jobs.

POMS Team

Monitoring Requirements
The following are the requirements involving the monitoring of tasks.

Number Requirement Source Priority
M1 The solution shall show the progress of a

campaign in terms of percentage of event,
files or jobs complete (whichever matches
better the particular task)

POMS Team

M2 The solution shall show the subtasks and
specific jobs associated with a task

POMS Team

M3 The solution shall let the user query the
amount of time a job has been in it’s current
state

POMS Team

M4 The solution shall show the last time an
experiment job run in a particular site

POMS Team

M5 The solution shall trace the workflow of
processing tasks from creation to completion

POMS Team

M6 The solution shall monitor the advance of
processing subtasks

POMS Team

M7 The tool shall record the current state of
tasks and subtasks

Req-PMD -
01/15

M8 The tool shall record the transition of state
for every task and subtask including a
timestamp and reason for the change

Req-PMD -
01/15

M9 The tool shall record information about each
particular job, including facility, jobID, and
type of system it ran on.

Req-PMD -
01/15

M10 The tool shall keep track on the ongoing
state (staging data files, processing,
transferring output, etc.) of the job and the
state transition.

Req-PMD -
01/15

M11 The tool shall keep information about jobs for
at least 30 days after they complete to
support post-mortem diagnosis.

POMS Team

PreLaunch Requirements
The following are the requirements actions to take before launching grid jobs.

Number Requirement Source Priority
P1 The solution shall check if the major services

required for launching jobs are up/down
before submitting (manually or
automatically)

POMS Team

P2 The solution shall check if the software
required to execute a job is available before
submitting (manually or automatically)

POMS Team

P3 The solution should check job queues for an
experiment or a particular role, as required.

POMS Team

P4 The solution shall check the input
information for a submission and make sure
they are consistent and feasible before
allowing it to be submitted to OPOS, and/or
queued to run.

POMS Team

Job Submission Requirements
The following are the requirements related to launching grid jobs.

Number Requirement Source Priority
J1 Batch-level tasks shall be submitted

automatically when dependent-upon tasks
complete their running phase

Req-PMD -
01/15

J2 The solution shall support using experiment's
specific submission scripts to launch jobs.

POMS Team

J3 The solution shall support grid authentication
with suitable proxies

POMS Team

J4 The solution shall store information about
who or what created a task and the type of
task

POMS Team

J5 The tool shall store and be able to use
information about how to execute a subtask
(which script to execute and how)

POMS Team

J6 The solution shall store all information
necessary to reproduce the task at a later
date (code release versions, input dataset,
generator data, random seed (MC case), …

Req-PMD -
01/15

J7 The tool shall include free format text in
requests to store and retrieve experiment
specific task configuration information

Req-PMD -
01/15

J8 The tool shall be able to manage DAG type
dependencies between subtasks

Req-PMD -
01/15

J9 The system shall support different Req-PMD -

experiment-specific job submission scripts. 01/15
J10 The tool shall be aware of service availability

(i.e batch queue length, SAM service status,
etc.) and hold job submissions if services are
overloaded or unavailable.

Req-PMD -
01/15

J11 The tool shall support job submission to all
jobsub-available slot types (i.e offsite, onsite,
opportunistic, etc.)

Req-PMD -
01/15

J12 The tool shall offer and approbation
mechanism for the tasks that require it.

Req-PMD -
01/15

J13 The tool shall allow certain user roles to
authorize/approve tasks.

Req-PMD -
01/15

J14 The tool shall allow certain user roles to
prioritize the tasks that are in the queue.

Req-PMD -
01/15

J15 The tool shall allow individuals or groups
within the experiment to create a new
request.

Req-PMD -
01/15

J16 The tool shall queue the incoming tasks
before start processing it.

Req-PMD -
01/15

Diagnostics Requirements
The following are the requirements related to triaging failing jobs and recovering
from them.

Number Requirement Source Priority
D1 The solution shall provide the following

information for failed jobs: condor exit code,
job log files, related SAM logs, related FTS
logs, related ifdh logs and status of major
services during the job execution.

POMS Team

D2 The system shall implement a mechanism for
black hole detection and remediation

POMS Team

D3 The tool shall provide a mechanism to
resubmit the failed parts of incomplete tasks.

Req-PMD -
01/15

Request Workflow Requirements
The following are the requirements related to the registration, prioritization and
approval of new requests.

Number Requirement Source Priority
W1 The solution shall allow the registration of job

approvers per production stage
POMS Team

W2 The solution shall offer an interface for
approver to accept, reject or, possibly,
consolidate requests

POMS Team

W3 The solution shall present to approvers a list
of request pending to be approved

POMS Team

W4 The solution shall allow the authorized
experimenters to change priority of queuing
requests

POMS Team

W5 The solution shall keep history of already
completed requests

OPOS Team

W6 The solution shall allow an experimenter to
clone an already existing/completed request

OPOS Team

System Requirements

Number Requirement Source Priority
S1 The solution shall offer a web interface, a

command line interface and a scriptable
interface to support automation.

Req-PMD -
01/15

S2 The web interface of the solution shall
provide monitoring and management
functionality.

Req-PMD -
01/15

S3 The solution needs to be available 9x5 for
the OPOS group.

OPOS Team

Computing Policy Requirements

Number Requirement Source Priority
CP1 The solution shall comply with Fermilab

Computing Policies.
General

