6 March 2015

Profile report of the reco-2D and reco-3D stages of the
MicroBooNE reconstruction software

The purpose of this document is to report on a 2.5 day, informal SCD profiling effort
targeted at the MicroBooNE 2D and 3D reconstruction chain that utilizes algorithms
within LArSoft. The need for this effort came indirectly through the LArIAT 2015/2016
CPU-hour requests announced during the weekly SCD SPPM meeting and was originally
targeted at LArIAT code. The requested per-event CPU time appeared to be
extraordinarily high and a team was assigned to take a quick look for possible
improvements. The team quickly recognized that the LArIAT estimates were derived
directly from MicroBooNE and the effort was redirected there.

We have profiled the reco-2D and reco-3D portions of the production chain using
generated Monte Carlo samples that have been propagated through GEANT4 and the
detector simulation. For this study, we have produced and used event samples that are
intended to represent the environment of the MicroBooNE detector during normal
operations. The job configurations to produce such samples were suggested to us by
Herb Greenlee of MicroBooNE.

For the reco-2D stage, the median (average) time per event is 12.7 sec (32.4 sec),
whereas for the reco-3D stage, the median (average) time per event is 72.0 sec (97.3
sec). The lengthy per-event processing times are due in part to the following choices
made by the software developers:

* the choices of algorithms used for particular sub-stages of the reconstruction,
such as hit finding, clustering, and track finding,

* the implementations of the algorithms themselves, and

* the information stored or kept per event.

Some specific examples are listed below.

* Alarge percentage of time is spent exercising ROOT’s fitting facilities, particularly
fitting pulse distributions with Gaussian functions, and even superpositions of
Gaussian PDFs.

* Asimilarly large percentage of time is spent calling functions like
std: :pow(..,0.5) and std: :map: :insert(..). There are known better
ways that ought to be explored.

* Since no event information is dropped throughout the production chain,
simulated quantities are passed all the way from the generation stage through the
reconstruction stages. By writing the simulated quantities to the output of the
reco-3D stage, the virtual memory is increased by 2GB and can result in up to a 30
second increase in job execution time per event.



If effort is going to continue in this area, we recommend that the MicroBooNE software
developers and LArSoft developers should:

* Determine if fitting distributions with (superpositions of) Gaussian PDFs,
something typically done for physics analysis, is required at the reconstruction
level. If so, a dedicated least-squares library may be more effective than ROOT’s
fitting libraries.

* Determine if some of the perhaps more experimental algorithms (e.g. Bezier
track fitting) can be dropped in favor of something less time consuming.

* Take care to optimize the use of ‘for’ loops:

o Move calls to constant expressions outside of the loop (e.g.
std::sqrt(7.))

o For double loops that are commutative (i.e. result of (i, j) equals that of
(j,1)), the calculations of off-diagonal elements should not be repeated.

More specific discussions of our setup, findings and comments are given in the following
pages.

Allow us to thank you for the opportunity to explore your code and exercise it. We
appreciate the chance to learn how FNAL experiments implement their simulation and

reconstruction algorithms. We hope that this report will be useful to you as MicroBooNE
and LArSoft consider their next steps in improving their software and simulation design.

Please do not hesitate to contact us further.
Best regards,

Kyle Knoepfel

Paul Russo

Jim Kowalkowski

FNAL Scientific Computing Division



I. The setup

The code was built in profile mode using the e6-qualified larsoft suite versions
v4 00 00andv4 00 01 along with the most recent push to the uboonecode git
repository, current as of February 23, 2015.

We produced various samples with anywhere from 1 to 500 events, using the
production chain:

[1] lar -c <some production scheme.fcl>

[2] lar -c standard g4 uboone.fcl prod* gen.root

[3] lar -c standard detsim uboone.fcl prod* g4.root

[4] lar -c standard reco uboone 2D.fcl prod* detsim.root
[5] lar —c standard_reco uboone 3D.fcl prod* 2D.root

The following production-level FHiCL files were used:

[a] prodgenie common_ cosmic uboone.fcl
[b] prodgenie bnb nu cosmic uboone.fcl

Only stages 4 and 5 were profiled.

We used two profiling programs: allinea (v5.00.00) and valgrind (v3.10.1). The
results from both programs are consistent. For brevity, we primarily refer to the results
produced from allinea. Both of these tools are generally available to all lab members
and can be installed using the usual UPD tool.

All measured runs were performed on develop nodes woof . fnal.gov and
cluck.fnal.gov.

II. Our findings and comments

Although we highlight multiple places where improvements can likely be made,
implementing only a few of them is unlikely to achieve significant performance gains. This
implies a systemic issue in the overall design of the code: high-powered algorithms have
been chosen for reconstruction and high-performance implementations of these algorithms
are not utilized. If such algorithms are necessary, then dedicated C++ libraries should be
used in favor of ROOT algorithms, which are more appropriate for physics analysis and not
optimized for a reconstruction environment. MicroBooNE and LArSoft should investigate
whether the chosen set of algorithms are required and should find ways to implement
higher performance routines if possible.

In what follows, all percentages are expressed relative to the total CPU running time of
the job. Itis important to note that time spent doing I/0 affects the total running time of



the job, but does not count in the CPU time. This becomes very important when
considering the ROOT I/0 module.

The tables below show the per-module running times for each module included in the
execution path—note that these are wall-clock times, not CPU times.! The entries are
ordered according to the average time taken for each module. These results were
determined by retrieving the art Timing service printout from the log files. Including
all modules, the median (average) time per event is 12.7 sec (32.4 sec) for the reco-2D
stage, whereas for the reco-3D stage, the median (average) time per event is 72.0 sec
(97.3 sec).

Reco-2D (in seconds)

module label | Min Avg Max
outl | 8.58644 13.3756 32.5296
pandora | 0.221644 8.40859 221.102
caldata | 1.9309 3.04769 12.6421
fuzzycluster | 0.290592 2.5211 11.2051
gaushit | 0.547555 2.49191 15.7718
cccluster | 0.428353 2.3756 16.7683
opflash | 0.0146341 0.0507723 0.862585
rns | 8.70228e-05 0.000122139 0.000339985
TriggerResults | 4.3869e-05 6.02316e-05 8.98838e-05
Reco-3D (in seconds)
module label | Min Avg Max
beziertrackercc | 2.43425 22.3087 60.5369
costrkcc | 2.21479 19.2633 42.9008
outl | 11.2953 15.6302 24.0332
beziertracker | 0.770546 8.62989 23.875
costrk 0.979419 5.19026 10.6814
beamflashcompat 0.772372 2.78226 5.35873
trackkalmanhitcc 0.573231 2.59147 6.6801
stitchcccalo 0.577038 2.36763 6.97095
spacepointfindercc 0.0841441 2.3431 9.70711
trackkalspscccalo 0.472975 2.30428 8.18714
trackkalmanhit 0.528796 1.89992 4.54985
spacepointfinder 0.132835 1.57304 7.0053
trackkalmanhitcccalo 0.812297 1.54655 3.03745
stitchcalo 0.185467 1.46539 6.34125
trackkalspscalo 0.362722 1.30534 6.13064
trackkalsps 0.384797 1.12523 2.94881
costrkcccalo 0.529308 1.04651 2.19475
trackkalmanhitcalo 0.305757 0.951603 2.40347
trackkalspscc 0.394712 0.936043 1.67436
stitchkalmanhitcalo 0.258669 0.927119 2.53201

TriggerResults is automatically appended to the module list by art.




Reco-3D (in seconds — continued.)

module label | Min Avg Max
costrkcalo 0.327197 0.724612 1.83589
featurevtx 0.011682 0.0591867 0.338767
stitchcc 0.0036509 0.0198794 0.0531549
stitch 0.00425005 0.018968 0.0556412
stitchkalmanhit 0.00345302 0.0130652 0.0319519
beziertrackercccalo 0.000331879 0.00141158 0.00225401
costrkcctag 0.000690937 0.0012628 0.003407
trackkalmanhitcctag 0.000537157 0.00120226 0.00262213
costrkccpid 0.000390053 0.00110436 0.00217605
trackkalspscctag 0.000485897 0.00110077 0.00299883
beziertrackercalo 0.000379086 0.00104811 0.00191808
stitchcctag 0.00036788 0.00100462 0.00318193
trackkalspstag 0.000392914 0.000950694 0.00454783
costrktag 0.000488043 0.000936914 0.00300193
trackkalspspid 0.000294924 0.000894427 0.00157714
trackkalmanhittag 0.000365019 0.000885928 0.00232697
trackkalspsccpid 0.000206947 0.000850165 0.00156784
stitchtag 0.000232935 0.000824511 0.00454617
stitchkalmanhittag 0.00027895 0.000723755 0.00218201
costrkpid 0.000325918 0.000694263 0.00112796
trackkalmanhitpid 0.000238895 0.000652337 0.00219488
trackkalmanhitccpid 0.000237942 0.000603557 0.00119996
stitchccpid 0.000203133 0.000550318 0.00114298
stitchpid 0.000194073 0.000530839 0.00151181
stitchkalmanhitpid 0.00019908 0.000443769 0.00097394
beziertrackercctag 7.79629e-05 0.000400949 0.000724077
beziertrackertag 0.000109911 0.000320172 0.000652075
beziertrackerccpid 4.60148e-05 7.15375e-05 0.000183105
beziertrackerpid 4.50611e-05 6.3169e-05 0.000111103
rns 4.19617e-05 5.99861e-05 0.000195026
TriggerResults 1.69277e-05 3.28898e-05 7.60555e-05

The top five modules in execution time have been highlighted in gray in both tables. We
will concentrate on these top-five modules and particularly the most time-intensive
functions they call.

valgrind’s callgrind-tool plots of the call trees for the reco-2D and reco-3D stages
are available at the following link: https://cdcvs.fnal.gov/redmine/documents/859.
These plots are useful for seeing a graphical overview of how the CPU time is split
between the module routines.




A.reco-2D

outl module type: RootOutput

The ROOT I/0 is the most expensive part of the reco-2D stage: 41.4% of the total
running of the job is spent in the ROOT output module. The profiler shows that 4.0% of
the reco-2D CPU time is spent unzipping the input data, and 4.5% of the CPU time is
spent zipping the output data, which seems excessive. Not included in the 8.5% data
compression/uncompression CPU time is the time spent writing to disk, which accounts
for 12.2 seconds of the average 13.4 seconds running time per event spent for this
module (the 8.5% of the total job CPU time for zipping/unzipping accounts for the
remaining 1.2 seconds of running time).

The 41.4% of the job running time devoted to ROOT I/0 points to a larger problem—
that the type of information and the way it is stored is suboptimal.?

Recommendations

* Evaluate the use of data compression and only compress the data where the loss of
performance is justified by the reduction in the cost of storage.

* For data that must be compressed, test the results of choosing different compression
levels to find a balance between CPU cost and storage savings. Individual data
branches can have specific compression factors associated with them. This is done
by specifying in the data-product xm1 file (e.g.):

<class name="art::Wrapper<user::CompressedProduct>" compression="9"/>

* Evaluate the use of the upcoming art feature that allows use of multiple data tiers on
input—the raw data could be in one tier, the digitized data in another tier, the
simulated data in another, the 2D in another. The advantage here being that data
from a given tier is available on request and only transferred from disk on specific
request from a module, thereby retaining access to all necessary data but greatly
reducing memory usage.

pandora module type: MicroBooNEPandora

MicroBooNEPandora inherits from LArPandoraParticleCreator, which is
where the time is spent, not in MicroBooNEPandora. According to allinea, 27% of

the reco-2D CPU time is spent executing the following statement in
LArPandoraParticleCreator.cxx:

this->RunPandoralInstances(); // line 142 in our checkout

Z See Sect. B, where we discuss the effect of dropping the s imb* data products in the reco-3D stage and
what gains can be expected from this.



The primary contributers to the 27% are:

// ClusterAssociationAlgorithm.cc::47
9.4% this->PopulateClusterAssociationMap(...)

// VertexSelectionAlgorithm.cc::60
84% float figureOfMerit(..)

Tracing the percentages further down from this->Populate*Map(...), eventually
yields LArClusterHelper: :GetExtremalCoordinates (..) which accounts for
8.7% of the total execution time of reco-2D.

For the figureOfMerit (..) calculation, the majority of that time is spent calling
histogram-filling functions. A decent percentage of that time is spent using the
std: :pow(...) function, which is not fast.

Recommendations

* Forthe PopulateClusterAssociationMap algorithm, the
LArClusterHelper: :GetExtremalCoordinates processes twice as many
cluster pairs as necessary due to overlapping loops. This should be adjusted.

* Forthe figureOfMerit calculation, a higher-performing de-weighting scheme
should be considered.

caldata module type: CalWireROI

Many things are going on with CalWireROI module.cc:

1. Forline 278, the evt.getByLabel (...) call takes 4.5% of the job execution
time, which is due almost entirely to the unzipping of the compressed data from
the input file.

2. Line 381 is responsible for 3.5% of the execution time.

3. Line 385 takes 1.6% of the job execution time, due to the call to sqrt (7.)
within the loop.

4. The sss->SetDecon(transformSize); call online 517 comprises 8.7% of
the execution time. Of that percentage, 3% is due to evaluating TF1 functions
(SignalShapingServiceMicroBooNE service.cc:617).

5. Line 535 is where the deconvolution takes place, which takes 1.7% of the time.

Recommendations

* For the zipping issues, see our comment for the out 1 module above.

* There is alot of duplication in summing the rawadc values (1. 381) with the lines
that precede it. Every ADC count is used in the window sum seven times. One can do
a rolling sum to avoid so many calls to operator+=and operator-.



* The sgrt(7.) call should be taken out of the loop to make the contribution of line
385 negligible.

* Evaluating the filter functions is taking longer than the deconvolutions. This should
be examined.

fuzzycluster module type: fuzzyCluster

This module accounts for 18% of the running time of the reco-2D stage, 13% of which is
due to calling cluster: :HoughBaseAlg: : Transform(...). Tracing this percentage
further down, the majority of the time spent here is due to executing
std::map::insert(..) from calling:

cluster::HoughTransformCounters<..>: :unchecked add range max(..)

Inside that function, calling Base t::counter map.lower bound/(..) accounts for
9% of the total execution time of the job.

Recommendations

* The design of the sparse Hough counters array is (perhaps overly) complicated, and
it may be that the ordering of the entries is important, as indicated by using
lower bound. Butin the event that the ordering is not (not only here but in other
places), it will be more effective to use an std: :unordered_map object.

* The Hough counters array implementation was chosen to save memory at a rather
high cost in CPU time. This should be reconsidered.

gaushit module type: GausHitFinder

According to allinea, 2% of the execution time is devoted to constructing the TF1
Gaus object on line 731 of GausHitFinder module.cc.

Recommendations

* Fitting ADC distributions with Gaussians is a very high-powered functionality for hit
reconstruction. A faster algorithm should be considered.

* Ifyou decide to retain ROOT as the fitting library, to avoid constructing TF1 objects
repeatedly, it would be better to create a look-up table of all desired functional forms
and to simply use the appropriate one when calling FitGaussians.



B. reco-3D

beziertrackercc module type: BezierTrackerModule
beziertracker

These modules are the most time-consuming, with the following breakdowns for total
execution time:

// BezierTrackerModule module.cc::167
14.1% fBTrackAlg->FilterOverlapTracks(..)

// BezierTrackerModule module.cc::169
13.5% fBTrackAlg->MakeOverlapJdoins(...)

// BezierTrackerModule module.cc::172
4.2% fBTrackAlg->FilterOverlapTracks(...)

32.6% Total (including other BezierTrackerModule calls) ‘

20% of the total is due BezierCurveHelper::GetDirectionScales(...) calls—specifically, the
three calls to std: : pow (.., 0.5) inside of it.

Recommendations

* GetDirectionScales needs to be investigated to see if the use of square roots
can be removed, which would result in a 20% savings in reco-3D processing time.

costrkcc module type: CosmicTracker
costrk

Examination of the produce(...) routine in CosmicTracker module.cc shows the
execution of lines 418-420 comprise 22% of the reco-3D job: 4.6%, 4.5%, and 12.9%
respectively.

Recommendations

* Adjust the double loops so thatthe (i, j) and (j, i) calculations are not repeated.
For example: lines 401 and 402 should become:

for (int i =
for (int j

/] ..

0; i < nplanes; ++i) {
= 0; j < i+1; ++j) {

or something similar instead of repeating the off-diagonal element calculations. The
same may hold true for the c1 and c2 loops in lines 403 and 404. It looks like
something akin to this was explored, based on the comments in lines 399 and 400. If
possible, this should be implemented.

* The more general question however, is whether there are more efficient ways of
doing integrals and whether a KS test indeed is appropriate at this stage.



outl module type: RootOutput

This has been discussed in II1.A.

Recommendations

For the reco-3D stage, we did a test by placing a ‘drop’ directive in the
outputCommands portion of the RootOutput ParameterSet.

outl: {
module type: RootOutput
fileName: "$ifb %tc_reco3D.root"
outputCommands: [ "drop sim* * * *" ]
dataTier: "reconstructed-3d"
compressionLevel: 1

}

By doing so, the peak virtual memory of the job dropped from roughly 3.5 GB to
roughly 1.2 GB. The execution time for the out 1 module also dropped to a negligible
amount.

The request to pass on the simulated quantities to the output of the reconstruction
chain is unnecessarily degrading the performance of the reconstruction, which
during data collection and data processing will know nothing of these simulated
quantities. We can imagine that storing the simulated information may be important
for validating reconstruction algorithms against Monte Carlo truth. However,
MicroBooNE should decide whether keeping (all of) the simb* data products is
required.

III. Next steps

To move forward, we suggest meeting with the MicroBooNE and LArSoft developers to
discuss the following questions:

What are the motivations for the chosen set of reconstruction techniques?

Have other options been tried to achieve equivalent results?

What tests exist to ensure consistency in physics results upon code modifications?
What is the time scale for which improvement is necessary?

We also want to discuss mapping out a staged plan with the developers that will make
incremental code improvement possible. Here is a start at listing essential pieces of such
a plan.

1. Understand the constraints (some examples here):
*  Whatis the desired reconstruction time? For Monte Carlo? For data?
*  What are the desired physics results?

2. Begin establishing validation processes for:
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* Physics - Through representations of quantities (in the form of histograms or
statistical measures), which can be influenced by coding changes.

* Coding correctness - Through unit and integration tests to verify intended
behavior of implementations.

* Performance - Through profiling metrics, job execution time, and resource
usage.

Implement the specific modifications for minor performance gains (up to 20%

based on this analysis).

Replace the more time-consuming code with well-established existing

techniques. This step is intended to achieve significant performance gains while

retaining equivalent physics results.

[terate the above steps as necessary.

11



