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Fermilab

Fermilab at the Intensity Frontier

At the Intensity Frontier, scientists explore new
= FC| physics in unprecedented breadth and detail using
=0 A intense beams of neutrinos, muons, kaons and nuclei.

Fermilab at the Energy Frontier

At the Energy Frontier, scientists discover new
particles and directly probe the architecture of the

Fermilab at

Q 2Dt EherdyFrorer fundamental forces using high-energy colliders.

Fermilab at the Cosmic Frontier

At the Cosmic Frontier, scientists reveal the nature of
| dark matter, dark energy and other phenomena of new
physics using particles and light from the cosmos.

Fermilab at
the Cosmic Frontier
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Neutrino Experiments

® Detect Neutrinos and measure their
masses
® Important Standard Model

measurement, candidates for dark
matter

® Produce neutrino beam and direct it to
far detector, compare near and far
detector measurements

» Current experiment: NOvVA
® 500 miles to Ash River, Minnesota

* Future experiment: DUNE/LBNF |

® 800 miles to Sanford Underground |
Dakota G o 45 e
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Energy Frontier

 Till September 2011: Tevatron

at Fermilab

® Circumference 6 km
® Collision energy: ~2 TeV

* Now: Large Hadron Collider

(LHC) in Geneva, Switzerland

® Circumference 27 km
® Collision energy ~13 TeV

® Fermilab is involved in the CMS
experiment and contributes to the
accelerator
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NSRS

Fermilab
Tevatron
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Cosmic Frontier

= Use the cosmos as a laboratory to Dark Energy Survey (DES)
iInvestigate the fundamental laws of olEerey
physics.

* Use detectors to study particles from
space as they approach and enter our

atmosphere
® Cosmic rays, gamma rays and neutrinos emitted
by the sun

SDSS
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Fermilab Computing

* Provide and manage computing services and resources
= Data recording, storage, access

* Bulk processing, analysis
* Functionality analogous to LHC Tier-0O and Tier-1
* CPU Cores, Online (Disk) and Offline (Tape) Storage, Networking
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7

omputing in HEP
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The Scientific Process

Software
&
Computing

Science

Device

» Software & Computing is an integral part of the scientific process
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Software & Computing

N
RAW. EUMGIGuSEe RECO 0
| reconstruct 2
Data data Data IE

Simulation

» Software is important for every step on the way to scientific results
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Software & Computinc

Central

RECO Analysis
Data software

* Computing resources (Storage and Network, Processing, ...) are needed for all steps
aF Fermilab
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Computing at Fermilab

» Software and computing are needed at all steps from
data collection to physics results of any experiment

* Performant and scalable solutions are required to extract
physics results quickly and efficiently

* Fermilab is a world leader providing solutions for

experiments, we concentrate on:

e CMS, NoVA, MicroBooNE, MINOS, Mu2e, Muon g-2, DES, and other
Fermilab experiments and projects and HEP community at large

2= Fermilab
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Computing Lifecycle: CMS

Data Acquisition (PPD)

Data quality and trigger and
detector operation monitoring

Legend:

Lead by PPD

2= Fermilab
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Computing Lifecycle: NOVA

A very successful
approach!

Neutrino
oscillations with

NOVA

Legend:

2= Fermilab
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FIFE

Fabrlc for Frontier Experiments
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NoVA, MicroBooNE, MINOS, Mu2e, Muon g-2, DES, ...
 Approach:

® Support offline & computing needs of experiments
* We provide standard interfaces into Fermilab computing
resources (CPU, disk, tape)
* We enable science through a modular toolkit of services and
applications

Job
submission

= Goal: Physics
® Help experiments focus on their science sk
* Provide infrastructure to experiments that get them to computing resources

* Provide software framework solution and support community-based reconstruction
software

® Utilize previous solutions and integrate everything into seamless model

Grid Jobs

Data

Handling Applications

* FIFE project - Strategy: Databases (calib/

® Address all of the computing needs for experiments
* Modular enough so that experiments can take what they need
* Spans all cross cuts, in particular the Neutrino, Muon and Cosmic cross cut
® Provide mechanism for feedback from experiments to incorporate their tools and
solutions
® Help experiments utilize computing beyond the Fermilab campus
® Integrate new tools and resources from outside Fermilab and other communities as
they develop
* Synergy with CMS especially important

conditions, ...)

2= Fermilab
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Common Services and Projects toolkit

* FIFE provides access and support for common tools in:

16

e DAQ and Controls

® érid and Cloud

® écientific Data Storage and Access
® écientific Data Management

® écientific Frameworks and Software
® F.’hysics and detector simulation

® batabases

® écientific Computing Systems

e Scientific Collaboration Tools

Oliver Gutsche | Exascale and Exabytes: Computing at Fermilab for LHC and Intensity Frontier

DAQ
Storage

File Transfer

generic offline
workflow
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art & Larsoft

» artis a modular event-processing framework for

experiments

® Fork of the CMS framework: smaller experiments can
base their software on a framework from one of the

big LHC experiments

* Many experiments are using art as their software

framework

® This allows shared development and support among
the experiments and the developers

* Weekly stakeholder meetings, mailing list and issue trackers are
used to coordinate development

Y

Dynamic
library loading

Event Loop &
paths

/O handling

> <

Provenance Your More Your

generation physics physics friend’s
code code code

Metadata

> 4

Run/Subrun/

Messagin Confisuration
Event stores siNg &

A 7\

framework

® Integration into Fermilab’s data-handling system, |/O, etc. is an important part of the art project
» art-daq is variant of the framework used as part of the daq system

= Larsoft

‘Code you write . Code you use from the

® Technical goal: Provide an integrated, art-based, experiment-agnostic set of software tools to be used by multiple LArTPC neutrino

experiments to perform:

e Simulation, Data reconstruction and Analysis

® Broader goal: By developing common algorithms, services, data structures, architecture, dramatically reduce the cost of developing,
maintaining and supporting the reconstruction and simulation software for collaboration members

® Community is collectively contributing to the larsoft software
* Resolve conflicts through process to integrate development from different stakeholders
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Supported experiments and software

» Collider experiments

* Neutrino experiments

® CDF ® ArgoNeut

®* DO ® LAr1-ND
® LArlAT
®* _LBNE
® MicroBooNE
® MINERVA
® MiniBoone
® MINOS
® NOVA
® NUMI
® SNO+

- Flavor experiments * Software

s MIPP ® Geant4

o Mu2e ® GENIE

® Muon g-2 ® MARS

® SeaQuest
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» Astroparticle/Cosmology

Experiments

* CDMS
* COUPP
® DAMIC

® Dark Energy Survey
® DarkSide-50

® DESI

® Holometer

© | SST
® SDSS

 R&D
® CHIPS

® GENDEtRD

® MCDRD
® Next
© SCENE

14. August 2015
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FIFE Experiments - Activity in 2014

All FIFE Experiments CPU hours
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Off-site utilization is ramping up

All FIFE Experiments CPU hours

B FNAL
B off-site (OSG)

©AWS

In 2014 of 45M CPU hours, almost 2M hours were run off-site including first Amazon
Web Services (AWS) usage of 20k CPU hours worth $3.3k as a pilot project

Nova CPU hours
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Nova CPU hours

H FNAL
B off-site (OSG)

©AWS
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Operations group

* Operating the complex computing services requires significant
knowledge and experience
® Especially valid for job execution at high scales on various resources

* Fermilab founded the
operations group to support
NOvVA, MINOS and Minerva
(experiments that are currently
taking data), helping in running
crucial workflows like data

keep-up processing and MC
production

2= Fermilab
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CMS
See Talk by Maria
Girone

2= Fermilab
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CMS - International and Distributed

* CMS resources worldwide
® / Tier-1 sites, 54 Tier-2 sites
® ~120,000 cores
® ~/5 PB disk
e ~100 PB tape

 CMS@FNAL
® ~15,000 cores
® ~15 PB disk
e ~30 PB tape

etween an
Q a sites
@ LHCOPN
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Services Overview

Services

cmsweb Dashboard

2 Fermilab
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Global Pool

Production submission machines

0,

Condor queue
Condor queue

Condor queue

. . . . N
Analysis submission machines

.......
/
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Operations Group at Fermilab

= Taking care of

® Running the Tier-0, Maintaining global transfers, Maintaining = 60 sites
worldwide, Operating the production infrastructure, ...

N\ America's particlelpysics
and accelerator laboratory
W, e

" "'/
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The Future

2= Fermilab
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Frameworks

= Underlying infrastructure, core of the software

® Large experiments have their own Frameworks

® Trend: community frameworks serving several experiments or detector technologies

* Art: common framework for neutrino and muon experiments

* LArSoft: common framework for liquid argon TPC (LArTPC) reconstruction software
* Gaudi: common underlying framework for ATLAS and LHCb software

 ALFA: the new ALICE-FAIR software framework

e |LCroot: ILC, CLIC, MuC, ORKA

2= Fermilab
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Moore’s Law

As Transistor Count Increases, Clock Speed Levels Off
lo'm'm ' v ) v .

 Traditionally, HEP software is e T
optimized for a “simple” P oot fCmy
architecture o o
® x86 based Linux 10
® Machines: >

* =1 CPUs with =1 Cores ==
® Shared memory Source:Intel 197 175 13m0 165 190 1995 200 205 2000

® Shared local disk space
What we see: more and more

® An application uses one core and cores, but less powertul
memory and local disk space individually.

2= Fermilab
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New technologies: more and more cores!

» X86-based machines: running into limitations

® Each application needs
e “Alot” of memory (~2GB for LHC experiments) and corresponding bandwidth from memory to a core
* The more cores in a single machine =» the more memory and bandwidth is needed

* New technology: GPGPU: General-purpose computing on graphics processing

units

® Use of a graphics processing units (GPUs) optimized for parallel processing =» using many cores per
application

® To perform computation traditionally handled by the central processing unit (CPU)

* New technology: Co-Processor architectures
e Keyword: Intel MIC (Many Integrated Core) Architecture

» Consequence: We need to use more cores In parallel for our applications!
af Fermilab
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Multi-threading: frameworks

» Advantage: save memory by sharing between threads
 current state: run each event in own thread

e EDEDED
Thread 2 ﬂ@ @

= future: run parts of events in different threads =» higher optimization
results with even less memory usage

@O
2= Fermilab
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Thread-safe programming

* New technologies: multi-threading,
GPGPU, Co-Processors

® Require new programming sKills!
® My opinion: comparable to Fortran =» C++
switch

= Multi-threaded programming needs
to be done right

© Small amounts of non-thread-safe code
reduces the efficiency significantly =»
Amdahl’s law

* Go and learn thread-safe
programming!
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Storage

2= Fermilab
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What is a Petabyte?

34

Oliver Gutsche | Exasca

WHAT IS
OPETABYTE?

T0 UNDERSTAND A PETABYTE WE
MUST FIRST UNDERSTAND A
GIGABYTE.

1 " 7 MINUTES OF
wnvee MD=TV VIDEO

2 " v5os OF BOOKS.%.

GIGABYTES

4 7 % SIZE OF A STANDARD
GIGABYTES DVD R

THERE ARE A MILLION GIGABYTES
IN A PETABYTE

le and Exabytes: Computing at Fermilab for LHC and Intensity Frontier

A PETABYTE

IS A LOT
OF DATA

20 MILLION

FOUR-DRAWER FILING CABINETS
FILLED WITH TEXT

15.5 YEARS

PETABYTE OF HD-TV VIDEO

‘l 5 SIZE OF THE 10 BILLION
o PHOTOS
PETABYTES ON ’ FACEBOOK

20 szss THE AMOUNT OF DATA|PER
gponoQE
sssm PROCESSED BY GOOGLE|DAY

PETABYTES mEEnm
TOTAL HARD DRIVE SPACE
=« MANUFACTURED IN ]995

op@po
oooQ
l..l
THE ENTIRE WRITTEN WORKS

PETABYTES
OF MANKIND, FROM THE BEGIN-
NING OF RECORDED HISTORY,
IN ALL LANGUAGES

PETABYTE

1
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LHC schedule
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LHC expectation data volumes

400 PB

B ATLAS
= CMS

W LHCDb
B ALICE

300 PB

200 PB

- -
0 PB _mmeeesssssssss S
Run 1 Run 2 Run 3 Run 4

» Shown: RAW expectations
® Derived data (RECO, Simulation): factor 8 of RAW

* LHC Run 4 is starting the exabyte era
* How do we analyze that much data in the future?

2= Fermilab
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Strong networks: ESNet

SEATILE
P am. AMSTERDAM
PNNL W
o LONDON _,
BOSTON GEANT
, BOISE .
SACRAMENTO . .
. CHICAGO ¢ ¥ 5
e . NEW YORK . "5 Bl GECr\I‘EEi\\IIA
PPPL*
SUNNYVALE £ S
¢ 7 WASHINGTON DC
*
JLAB
ORNL %
“ATLANTA
HOUSTON
Pacific Northwest GigaPOP
2-100G, Seattle/Chicago
.. OARnet
. agn 3 .‘~‘, Y . /\/\
. 00G, 10G
@ Universities 7 N — wsoe
. A h 100G, Missoula & f 2X100G, Boston/New York
O DOE laboratories oo | /G o N  =—+ e
210G, Seattle/LA ' N T b
E ! . . |een 'ms'amg.h' m&%ﬁmuadam
' \ [om = 100G, Starlight 7 )‘ ______ -
] ) 100G, Salt Lake City = ! -”"
; Neaay A oree NYSERNet
¢ @ ‘p "' 2 - P 1 PR ‘ 2x10G, New York City/Buffalo
T O A L PP . 2x100G, Chicago/Chicago N 3 E 4 .
" Se =l ,,
4N . =i, > f  maGPI
9 ke /: \\ ,,,,, z ',' o\ oy 100G, Philadelphia
e P S Nee . GPN * | Uof MO-Columbia 10G, Louisville ; .
{ 21006, ssunnyvale s’ J " 2006, - | 1006, Columbia : H %3\
Y - < Y Kansas City/Tulsa 4 '
et ’ T K Indiana GigaPOP \?‘ MAX ®
Y A ' 100G, 10G 5 | 100G, 10G, McLean/McLean
— 4 Sun Corridor 5 Chicago/indi o -
2-1006Tucson:Phoenlx :.' B - o ~ CAAREN .
........ Q | N U of Memphis | mission Py | MNC/C-Light 1006, Mctean
X ] 'lOG,Memphis \‘ 2%10G, o 3-100G, 2-Raleigh/Charlotte
O : 2 1| Jackson/Jackson MARIA A
Tfees ' Q " 100G, Ashburn |0 Ashburn
T
Q‘ Y p
ENERGY SCIENCES NETWORK ‘ . . 2 cLemsoN
) IP router site Seal PN ‘,.' at 100G, Atlanta
— S N Wy "o o - =& [sox
\ . . Connectorsite NS N Tt N, 2B ‘
The Office of Science supports: O  comectorsie N > ‘ oosata | )
: G Connecti 100G, Jacksonville
= 27,000 Ph.D.s, graduate students, undergraduates, engineers, and technicians sos ST cchon
= 26,000 users of open-access facilities LEARN | ——————— Comnectorname x\)
. . . . . 2x100G =+ No. of connections x speed -
» 300 leading academic institutions Houston/Dalls Fussecond porey
= 17 DOE laboratories

2= Fermilab

37 Oliver Gutsche | Exascale and Exabytes: Computing at Fermilab for LHC and Intensity Frontier 14. August 2015



Distributed infrastructures and transfer systems

38

Example: Worldwide LHC Grid (WLCG)

Full Mesh General
Purpose Scientific
Networks
between all

T1 and T2 sites

Dedicated

Optical

Private

Network
between TO and
all T1 sites

LHCOPN
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- DCo4
SC2
SC3

. SC4

. DDT

" CSA06

"~ Production
" Debug

]

Community uses various solutions to provide distributed

access to data:
Experiment specific: Atlas (Rucio), CMS (PhEDEX), ...
Shared: SAM (Neutrino and Muon experiments)

— 300 TB/day

1 PB/week

— 100

2004-06 —

|
;

2005-06

2006-06
2007-06
2008-06
2009-06
2010-06
2011-06
2012-06
2013-06
2014-06
2015-06

CMS transfers: more than 2 PB per week
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Dynamic Data Management

» Subscription based transfer systems
e PhEDEx (CMS) and Rucio (Atlas)
® LHC Run 1: mostly manual operations

e LHC Run 2: dynamic data management
* Popularity is tracked per dataset PR

* Replica count across sites is increased or decreased s ement Lol Worker
according to popularity annode - Node

CVMES Cache
onh node

 Fully integrated distribution system

e SAM (shared amongst Neutrino and Muon experiments) o Aeinry ee W b sice Squid_ J
° All movement is based on requests for datasets from jobs. — Evencduaand oupue 3

: es co CVMFS Stratum
® Interfaces to storage at sites, performs cache-to-cache Event data streaming Server

copies if necessary

* Data is distributed automatically for the
community

2= Fermilab

39 Oliver Gutsche | Exascale and Exabytes: Computing at Fermilab for LHC and Intensity Frontier 14. August 2015



Data Federations

= Xrootd: remote access to files

* ALICE based on xrootd from the
beginning

* CMS and Atlas deployed xrootd

federations
© AAA for CMS, FAX for Atlas

® Allows for remote access to all files on
disk at all sites

® Use cases:
e Fall back
e Overflow for ~10% of all jobs

40 Oliver Gutsche | Exascale and Exabytes: Computing at Fermilab for LHC and Intensity Frontier

Production

Transitional
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OSG StashCache
= OSG: StashCache

® Bringing opportunistic
storage usage to all users
Of OSG Stash

© OSG collaborators provide  origin: ¢
local disk space :
® OSG is running xrootd

cache servers

 Dynamic population of Caches: @
caches = efficient
distributed access to files

- For users that don’t have
infrastructures like CMS
and Atlas

OSG

2= Fermilab
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Active Archival Facility

 HEP has the tools and experience for the distributed

exabyte scale
® We are “best in class” in the field of scientific data management

* We are working with and for the whole science community

® To bring our expertise to everyone’s science
® To enable everyone to manage, distribute and access their data, globally

 Example: Fermilab’s Active Archival Facility (AAF)

® Provide services to other science activities to preserve integrity and
availability of important and irreplaceable scientific data
® Projects:

* Genomic research community is archiving datasets at Fermilab’s AAF and
providing access through Fermilab services to ~300 researchers all over
the world

* University of Nebraska and University of Wisconsin are setting up archival
efforts with Fermilab’s AAF

2= Fermilab
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Processing

2= Fermilab
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New resource providers

* Community Clouds - Similar trust - Researchers granted access to
federation to Grids HPC installations

* Virtual Organizations (VOs) of

users trusted by Grid sites

* Commercial Clouds - Pay-As- * Peer review committees award
You-Go model Allocations

® Strongly accounted
® Near-infinite capacity =» Elasticity
© Spot price market

* VOs get allocations =» Pledges

* Unused allocations: opportunistic resources © Awards model designed for individual Pls rather than

large collaborations

Trust Federation § Economic Model

2= Fermilab
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Evolving the Grid

Traditional: Evolution:
Resource Provisioning for Average Resource Provisioning for Peak

W ¥y \

1) O

o (2 4

3 3

1 o

2 | e ———— oI U

§ Data Reprocessing %

L O

O @)

o x

Analysis Analysis

Prompt Reconstruction Prompt Reconstruction

TIME TIME

* Experiments don’t need all the resources all the time
® Conference schedule, holiday seasons, accelerator schedules, etc.
® Resource needs vary with time =» Provisioning needs to adapt
a¢ Fermilab
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Fermilab’s HEPCloud

* Many experiments and facilities are exploring using commercial cloud providers to provision for

peak
e Examples: Atlas, CMS, STAR, NOVA, etc. / BNL, FNAL, CNAF, etc.

» Example: Fermilab’s HEPCloud

® Provision commercial cloud resources in addition to physically owned resources

® Transparent to the user Fermilab HEPCloud
Traditional Fermilab Facility physical
resources

Non-preemgtible Preemptible

I I
I I
I :
: Non-preemptible Preemptible 8 Submitter :
I o |
= i
Submitter L * 7 g : portur
I o |
: QD :
: » : 1
' = | Is
| O :
1 g : o |
: S Y commercial
: - : Remote clouds
JC "
2 Fermilab
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Open Science Grid = Facilitating shared access

“ ResearCher Use a OSG-Connect Duke-Connect
single interface to @\ \ /
UuSe resources ... XSEDE we— sa
® ... they own ogn (K Flocking >
@ ... others are willing to share 7
® ... they have an allocation on e / / \
® ... they buy from a commercial 0SG-Direct saerkab

(cloud) provider Virginia Tech S|

Others ....

* OSG focuses on making this technically possible for
Distributed High Throughput Computing

® Operate a shared Production Infrastructure =» Open Facility (glideinWMS)
® Advance a shared Software Infrastructure =» Open Software Stack
® Spread knowledge across Researchers, IT professionals & Software developers =» Open Ecosystem
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HPC & HEP
 HTC: High Throughput Computing

® Independent, sequential jobs that can be individually scheduled on
many different computing resources across multiple administrative
boundaries(*)

« HPC: High Performance Computing

® Tightly coupled parallel jobs, must execute within a particular site with
low-latency interconnects(*)

* Long history in HEP in using HPC installations

e Lattice QCD and Accelerator Modeling exploit the low latency
interconnects successfully for a long time

 Community effort: enable traditional HEP framework

applications to run on HPC installations
e Example: Mira at Argonne (PowerPC, ~49k nodes each 16 cores,
almost 800k cores) mmmam i b0 || ATLAS MC Job
® Generating Atlas LHC Events with Algren

2= Fermilab
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The Future: Exascale = more cores!

System attributes mm :If: NERSC Upgrade OLCF Upgrade ALCF Upgrades

Name

Planned Installation R
System peak (PF) 2.6
Peak Power (MW) 2
Total system memory 357 TB
Node performance
(TF) 0.460
Node processors Il
P Bridge
System size (nodes) : o?l%g
System Interconnect Aries
7.6 PB
File System 168 GB/
s, Lustre®

TITAN
27

9

710TB

1.452

AMD
Opteron

Nvidia
Kepler

18,688
nodes

Gemini

32 PB
1 TBI/s,

Lustre®

Cori
MIRA I 2016
10 I > 30
4.8 I <3.7
~1 PB DDR4 +
High Bandwidth
768TB Memory (HBM)
+1.5PB persistent
memory
0.204 I >3
Intel Knights
64-bit Landing many
PowerPC core CPUs
A2 Intel Haswell CPU
in data partition
9,300 nodes
49,152 1,900 nodes in
data partition
5D Torus ‘ Aries
26 PB 28 PB
300 GB/s 744 GB/s
GPFS™ Lustre®

Summit
2017-2018

150

10

>1.74 PB
DDR4 + HBM +

2.8 PB
persistent
memory

> 40

Multiple IBM
Power9 CPUs &

multiple Nvidia
Voltas GPUS

~3,500 nodes

Dual Rail EDR-
B

120 PB
1TB/s

GPFS™

Theta
2016

>8.5

1.7

>480 TB DDR4 +
High Bandwidth

Memory (HBM)

>3

Intel Knights
Landing Xeon Phi

many core CPUs

>2,500 nodes

Aries

10PB, 210 GB/s
Lustre initial

Aurora
2018-2019

180

13

> 7 PB High
Bandwidth On-

Package Memory
Local Memory and

Persistent Memory

> 17 times Mira

Knights Hill Xeon
Phi many core

CPUs

>50,000 nodes

2nd Generation Intel
Omni-Path
Architecture

150 PB
1TB/s

Lustre®

Total Concurrecncy

<

1.E+09 -

1.E+08

1.E+07

1.E+06

1.E+05

1.E+04

1.E+03

1.E+02

1.E+01

1.E+00

11172

Projected Parallelism for Exascale

1 billion per cycle

@
'_._!
o ®

1,000

X

x

Top 10

1717176

1/1/80

171784

Top System

171/88 1182 11/96 1/1/00 1/1/04 1/1/08 11/12 1116 11720

Top 1 Trend X  Historical ® Heavy Node Projections |

* Department of Energy's (DOE) Advanced Scientific Computing Research (ASCR) program
plans for Exascale Era =» “A lot more cores!”
= Opens up exciting possibilities for HEP: in the light of significantly increasing resource needs
(for example for the High Luminosity LHC)
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New architectures

a) current b) exemplary exascale architecture
Node Node Node Node Node
0 0 0 0 ClIC||IC]||C CCICI|IC ClIC|IC||C
O O O O
O O O O _
FILFUFIFIFIUFNFIFLIIFIFIF|F]| CCore
- Fast RAM
D:DRAM
DRAM DRAM D D D NV: NVRAM
volatile local volatile local NV NV NV
storage (disk/ssd)||||storage (disk/ssd)
Fast
volatile global storage (disk/ssd) volatile global storage (disk/ssd)
permanent global permanent global
storage (tape) storage (tape)

 HEP applications need a lot of memory and memory bandwidth

® Cannot have both in Exascale machines =» new architectures
® Requires to rethink how we design HEP applications!
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Summary & Outlook

2= Fermilab
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Summary & Outlook

» Software and Computing are integral parts of the HEP science process

® Fermilab is home for a tremendous amount of software and computing expertise
® We are supporting a wide variety of experiments from many corners of the HEP phase space

* For the future:

® Learn multi-threaded programming!!!

® Having to handle Exabytes of data is not that far off

* Many new tools help you, both if you are working for a LHC collaboration, the Neutrino and Muon
Experiment Community or any other HEP or non-HEP experiments

® Science will look different in the Exascale era

 Commercial clouds and Exascale HPC machines will change the way when and how we do
computing
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