
Framework introduction 

Marc Paterno
art/LArSoft course
3 August 2015

What is a framework?

•  From Wikipedia:
“… a software framework is an abstraction in which software
providing generic functionality can be selectively changed by
additional user-written code, thus providing application-specific
software”

•  The “generic functionality” provided by art is a command-line-
driven event-processing framework application.
–  command-line-driven: the application is not interactive
–  event-processing: the program processes a sequence of

events, as specified by the user
•  User-written code, in this case, is provided by you and your

colleagues.
•  Importantly, the framework is part of a larger “ecosystem”.

8/3/15M. Paterno | Framework Introduction2

Why do we have a framework (and other supporting stuff)?

•  To make it easier to work together.
•  Why is that important?

•  To make it easier to do your own work
–  “We just want to make plots!” –Adam Lyon
–  The framework does the parts of event processing you don’t

care about, but just want to work.

8/3/15M. Paterno | Framework Introduction3

Science demands reproducibility
•  results must come from official code
•  must be able to share that code
•  a framework provides the environment

through which code can be shared

What are some of the event-processing tasks?

1.  Simulation of detector response to events
2.  Reconstruction of real or simulated events
3.  Calibration studies
4.  Analysis: making plots!

•  All of these tasks can be performed in the same framework.
•  All the modules you may write can be re-used in any relevant

event-processing context.

8/3/15M. Paterno | Framework Introduction4

What does the framework do for you?

•  Mostly the framework exists to handle the tasks in event
processing that you don’t care much about, but which have to work
–  reading input
–  loading algorithms you want to run
–  configuring those algorithms
–  writing output
–  keeping track of how outputs were generated (“provenance tracking”);

critical for reproducibility
–  organizing histogram output
–  access to “global resources”: geometry information, calibrations, …
–  systematizing the handling of errors
–  timing modules, measuring memory use, tracking execution, …

•  The framework does not know about physics
–  You get to do the fun part

8/3/15M. Paterno | Framework Introduction5

What does the framework program look like?

output 1

plots 1

alg 1 alg 2 alg 3

path A

alg 4 alg 5

path B

plots 2

output 2

endpath

art file 1

art file 2
art input

file

source

histogram
file

8/3/15M. Paterno | Framework Introduction6

What are the parts of the “ecosystem”

•  Source code under version control
–  Your experiment uses one, you’ll have to learn about it (but not here)
–  Different experiments use different tools

•  git (many)
•  subversion (fewer)

•  A build system
–  Your experiment has one, you’ll have to learn about it (but not here)
–  For this class, you’ll continue using cetbuildtools (for LArSoft users, you’ll

be introduced to mrb on Friday)
•  Release, dependency, and environment control

–  art relies upon UPS, mostly behind the scenes
–  environment variables used to control PATH, dynamic loading of libraries,

etc.
–  You’ll see a little of this here.

•  art: this is what we’ll be learning about.
–  the framework itself
–  supporting products, e.g. configuration language, messaging, etc.

8/3/15M. Paterno | Framework Introduction7

•  Data products are read from
input file.

•  New data products are
created by algorithms.

•  Plots are created and written
out.

•  Data products are written to
several output files.

•  We want to be able to
improve any algorithm
without breaking others. We
want loose coupling.

What might a program look like without a framework?

8/3/15M. Paterno | Framework Introduction8

•  Data products are read from
input file.

•  New data products are
created by algorithms.

•  Plots are created and written
out.

•  Data products are written to
several output files.

•  We want to be able to
improve any algorithm
without breaking others. We
want loose coupling.

What might a program look like without a framework?

// pseudocode! not real C++.
// Part of the body of main
read(infile, &prod1, &prod2);
alg_1(prod1, &prod3);
alg_2(prod2, &prod4);
alg_3(prod3, &prod5);
plots1(prod2, plotfile);
plots2(prod3, prod4,
 plotfile);
write(outfile1,
 prod3, prod5);
write(outfile2,
 prod2, prod4);

8/3/15M. Paterno | Framework Introduction9

Loose coupling vs. tight coupling

•  Algorithms that are interwoven are hard to modify
–  changes in one part of the code often break code elsewhere
–  programs that are hard to modify are hard to improve and hard to

extend with your own ideas
–  interwoven = tight coupling

•  Loose coupling increases flexibility
–  replace algorithms you don’t like with ones you do
–  extend data structures without breaking old code
–  don’t need to “rebuild the world” because of local modifications

•  Loose coupling can be applied at every level
–  between classes
–  between libraries
–  between sets of libraries (packages)
–  this has influenced the design of art at every level.

8/3/15M. Paterno | Framework Introduction10

•  User code is what you
and your colleagues
provide.

•  Services provide
access to global
facilities.

•  Data model provides
the representation of
event data.

•  Event processor is the
“event loop”, the core of
the framework.

•  Configuration and
logger systems can be
used by everything.

User Code

LoggerConfig

ServicesModule
InterfaceData Model

Event ProcessorInput Output

What are the parts of the art framework?

8/3/15M. Paterno | Framework Introduction11

Choosing algorithms to run

•  Algorithms (simulation, reconstruction, or just analysis code)
is built into classes, put into dynamic libraries called modules.

•  Text files (in a language called FHiCL) declare
–  what modules will be loaded, and in what order they are to run
–  what files will be read and written

8/3/15M. Paterno | Framework Introduction12

output 1

plots 1

alg 1 alg 2 alg 3

path A

alg 4 alg 5

path B

plots 2

output 2

endpath

art file 1

art file 2
art input

file

source

histogram
file

Accessing data

•  Modules never
communicate with
(call) other modules.

•  Modules can call
services (e.g., to
create histograms
managed by ROOT).

•  Mostly, modules
interact with an Event.

•  An Event is just an
organized collection of
data products, with
information about them
(metadata).

8/3/15M. Paterno | Framework Introduction13

alg1 plots1

product 1

product 3

product 2

product 5

alg 3
output 1

Event

service
1

Data: events, subruns, runs, data products

•  An Event is the “atomic unit” for data processing, and is like a in-
memory database of user-defined data products
–  modules are passed a whole event, pick out the parts they want
–  producers and filters can put new data products into an event
–  art provides facilities for creating data product classes, but doesn’t

actually contain any such classes. Your experiments define them.
•  A SubRun is:

–  a sequence of events, collected or simulated under some consistent
running conditions

–  an event-like container for subrun products
•  A Run is like a subrun, only bigger.
•  The rules for defining subruns and runs belong to your experiment,

and are not part of art.
•  Events labeled with an EventID, which contains a triplet of run

number, subrun number, and event number.

8/3/15M. Paterno | Framework Introduction14

Phases of processing: callbacks and the module API

•  Modules are classes, so have constructors and destructors.
–  do as much initialization as possible in the constructor

•  Modules have member functions to handle the event loop
–  begin/end job: initialization not possible in the constructor can

be done here; should be undone at end job. Called before files
are open.

–  begin/end run: called when a new run is encountered in a file
(some subtleties ignored for now)

–  begin/end subrun: similar to above, but for subruns
–  event: this is the main processing function for most modules

•  Some module types can read from and write to the event;
some can only read from the event.

8/3/15M. Paterno | Framework Introduction15

Begin
Job

Begin
Run EventEnd

SubRunEvent End
Run

End
Job

Begin
SubRun

End
SubRunEvent Begin

SubRun

Getting input

•  Sources are the things that tell the framework what runs,
subruns, and events are to be processed.

•  Some sources read data files (e.g. RootInput, which reads
the art-ROOT data file format, as written by RootOutput).

•  One source (EmptyEvent) creates events containing no
products, for use in simulations

•  Your experiment may have specialized inputs:
–  to read file formats (e.g. written by your DAQ system); these will

have specialized sources created to read them;
–  to read from a live DAQ system
–  to do specialized manipulations of data from the file, before it is

given to the framework

8/3/15M. Paterno | Framework Introduction16

Services

•  Services provide access to program-wide information or
facilities.

•  Service can be access (almost) anywhere, at (almost) any
time
–  can be used in module constructors

•  art provides some services
–  examples include timing of modules, controlled creation of

ROOT histograms
•  Your experiment will also provide some services

–  Some are provided by LArSoft to many experiments
–  Some are completely experiment-specific
–  examples include access to geometry information, and

calibration information

8/3/15M. Paterno | Framework Introduction17

Making plots (and other analysis tasks)

•  Not all algorithms have to do with
simulation or reconstruction tasks.

•  Not all algorithms create new data
products for other algorithms.

•  Some algorithms accumulate
statistics about event data
–  calculate statistical summaries for

printing
–  mostly, create and fill histograms (or

other types of plots)
•  The framework provides a module

variety called an analyzer for such
tasks.

8/3/15M. Paterno | Framework Introduction18

plots1

product 1

product 3

product 2

product 5

Event

service
1

The difference between a module type and instance

•  A module type is also a C++ type, that is, a class.
•  One can have multiple instances of the same data type:

 
std::string greeting { “hello” };  
std::string farewell { “goodbye” };

•  Similarly, a framework program can have two instances of the
same module type:
–  Several instances of RootOutput, each writing its own output

art-ROOT data file.
–  Several instances of the same tracking algorithm, each with

different values of some configurable parameters.

8/3/15M. Paterno | Framework Introduction19

Where does your code go?

•  Of course, all code goes into a source code repository!
•  You only need to have the source code you are modifying

–  You are not modifying art itself
–  You may be modifying experiment code, or LArSoft code

•  Your experiment many have many packages.
•  The organization of your experiment’s code determines how

much (or how little) code you need to have access to.
•  To make builds fast, it is best to check out only what you have

to, and to use pre-built libraries as much as you can.
–  art, ROOT, Geant4, boost, … many large libraries are provided

pre-built for you.
–  If you are using LArSoft (as opposed to modifying it), you can

use the pre-built libraries.

8/3/15M. Paterno | Framework Introduction20

Getting involved

•  You’re already here. That’s a good start.
•  Meetings

–  your experiment
–  art stakeholders

•  Mailing lists
–  art-users@fnal.gov
–  artists@fnal.gov
–  your own experiment will have one or more lists

•  Issues (feature requests, bug reports)
–  anyone can report a suspected bug
–  try to get the report into the right tracker

•  experiment code in experiment’s bug tracker
•  infrastructure bugs in art issue tracker

–  please discuss feature requests within your experiment, or on the art-
users list, before submitting a feature request

8/3/15M. Paterno | Framework Introduction21

