2% Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Framework introduction

Marc Paterno
art/LArSoft course
3 August 2015

What is a framework?

From Wikipedia:.

“... a software framework is an abstraction in which software
providing generic functionality can be selectively changed by
additional user-written code, thus providing application-specific
software”
The “generic functionality” provided by artis a command-line-
driven event-processing framework application.

— command-line-driven: the application is not interactive

— event-processing: the program processes a sequence of

events, as specified by the user

« User-written code, in this case, is provided by you and your
colleagues.

« Importantly, the framework is part of a larger “ecosystem”.

2= Fermilab

2 M. Paterno | Framework Introduction 8/3/15

Why do we have a framework (and other supporting stuff)?

» To make it easier to work together.
* Why is that important?

Science demands reproducibility
* results must come from official code
 must be able to share that code
* aframework provides the environment
through which code can be shared

« To make it easier to do your own work
— “We just want to make plots!” —Adam Lyon
— The framework does the parts of event processing you don’t
care about, but just want to work.

2= Fermilab

3 M. Paterno | Framework Introduction 8/3/15

What are some of the event-processing tasks?

Simulation of detector response to events
Reconstruction of real or simulated events
Calibration studies

Analysis: making plots!

> W~

« All of these tasks can be performed in the same framework.

« All the modules you may write can be re-used in any relevant
event-processing context.

2= Fermilab

4 M. Paterno | Framework Introduction 8/3/15

What does the framework do for you?

* Mostly the framework exists to handle the tasks in event
processing that you don’t care much about, but which have to work

reading input

loading algorithms you want to run

configuring those algorithms

writing output

keeping track of how outputs were generated (“provenance tracking”);
critical for reproducibility

organizing histogram output

access to “global resources”. geometry information, calibrations, ...
systematizing the handling of errors

timing modules, measuring memory use, tracking execution, ...

« The framework does not know about physics

You get to do the fun part

2= Fermilab

5 M. Paterno | Framework Introduction 8/3/15

What does the framework program look like?

endpath

plots 1
path A ™

- histogram
file
)
Ig 1 Ig 2 lg 3
—
source
)
path B

output 1 »(artfile 1

~————
)
output 2 »(artfile2
art input
file —

pad

2= Fermilab

6 M. Paterno | Framework Introduction 8/3/15

What are the parts of the “ecosystem”

« Source code under version control
— Your experiment uses one, you’ll have to learn about it (but not here)
— Different experiments use different tools
* git (many)
 subversion (fewer)
A build system
— Your experiment has one, you’ll have to learn about it (but not here)

— For this class, you’ll continue using cetbuildtools (for LArSoft users, you’ll
be introduced to mrb on Friday)

Release, dependency, and environment control
— artrelies upon UPS, mostly behind the scenes

— environment variables used to control PATH, dynamic loading of libraries,
etc.

— You'll see a little of this here.

art: this is what we’ll be learning about.

— the framework itself

— supporting products, e.g. configuration language, messaging, etc.

2= Fermilab

7 M. Paterno | Framework Introduction 8/3/15

What might a program look like without a framework?

« Data products are read from
input file.

 New data products are
created by algorithms.

 Plots are created and written
out.

« Data products are written to
several output files.

 We want to be able to
Improve any algorithm
without breaking others. We
want /loose coupling.

2= Fermilab

8 M. Paterno | Framework Introduction 8/3/15

What might a program look like without a framework?

» Data products are read from // pseudocode! not real C++.

input file. // Part of the body of main
* New data products are read(infile, &prodl, &prod2);
created by algorithms. alg_1(prodl, &prod3);
- Plots are created and written ~ 919-4(prodz, &prod4);

out alg_3(prod3, &prod5);
' _ plotsl(prod2, plotfile);
 Data products are written to plots2(prod3, prod4,

several output files. plotfile);

- We want to be able to R RIS,
iImprove any algorithm ___ prod3, prods);
without breaking others. We Wmte(oui?ez’ 447
want loose coupling. PO, (POt

2= Fermilab

9 M. Paterno | Framework Introduction 8/3/15

Loose coupling vs. tight coupling

10

Algorithms that are interwoven are hard to modify
— changes in one part of the code often break code elsewhere

— programs that are hard to modify are hard to improve and hard to
extend with your own ideas

— interwoven = tight coupling
Loose coupling increases flexibility

— replace algorithms you don’t like with ones you do

— extend data structures without breaking old code

— don’t need to “rebuild the world” because of local modifications
Loose coupling can be applied at every level

— between classes

— between libraries

— between sets of libraries (packages)

— this has influenced the design of art at every level.

2= Fermilab

M. Paterno | Framework Introduction 8/3/15

What are the parts of the art framework?

User code is what you
and your colleagues
provide.

Services provide
access to global
facilities.

Data model provides
the representation of
event data.

Event processor is the
“event loop”, the core of
the framework.

Configuration and
logger systems can be
used by everything.

M. Paterno | Framework Introduction

User Code

Module
Interface

Event Processor

‘ Config] ‘ Logger]
3F Fermilab

8/3/15

Data Model

Choosing algorithms to run

 Algorithms (simulation, reconstruction, or just analysis code)
IS built into classes, put into dynamic libraries called modules.

« Text files (in a language called FHICL) declare

— what modules will be loaded, and in what order they are to run
— what files will be read and written

endpath

)

plots 1
path A N

— |
file

)

g 1 Ig 2 |
——
source
)
path B

output 1 »(artfile 1

——
alg 4 alg 5
)
output 2 »(artfile 2
art input
file —_

2= Fermilab

12 M. Paterno | Framework Introduction 8/3/15

pad

Accessing data

13

Modules never
communicate with
(call) other modules.

Modules can call
services (e.g., to
create histograms
managed by ROOT).

Mostly, modules
Interact with an Event.

An Eventis just an
organized collection of
data products, with
information about them
(metadata).

M. Paterno | Framework Introduction

Event

product 1

product 2

|_—| product 3

1Y

Al product 5

2= Fermilab

8/3/15

Data: events, subruns, runs, data products

14

An Eventis the “atomic unit” for data processing, and is like a in-
memory database of user-defined data products

— modules are passed a whole event, pick out the parts they want
— producers and filters can put new data products into an event

— art provides facilities for creating data product classes, but doesn’t
actually contain any such classes. Your experiments define them.

A SubRun is:

— a sequence of events, collected or simulated under some consistent
running conditions

— an event-like container for subrun products
A Runis like a subrun, only bigger.

The rules for defining subruns and runs belong to your experiment,
and are not part of art.

Events labeled with an EventID, which contains a triplet of run
number, subrun number, and event number.

2= Fermilab

M. Paterno | Framework Introduction 8/3/15

Phases of processing: callbacks and the module API

 Modules are classes, so have constructors and destructors.
— do as much initialization as possible in the constructor
* Modules have member functions to handle the event loop

— begin/end job: initialization not possible in the constructor can
be done here; should be undone at end job. Called before files
are open.

— begin/end run: called when a new run is encountered in a file
(some subtleties ignored for now)

— begin/end subrun: similar to above, but for subruns
— event: this is the main processing function for most modules

« Some module types can read from and write to the event;

some can only read from the event.
=8| [B
Job Job
3¢ Fermilab

15 M. Paterno | Framework Introduction 8/3/15

Begln End Begln End
SubRun E"e”t E"e”t] [SubRun] [SubRun E"e“t SubRun

Getting input

* Sources are the things that tell the framework what runs,
subruns, and events are to be processed.

« Some sources read data files (e.g. RootInput, which reads
the art-ROOT data file format, as written by RootOutput).

« One source (EmptyEvent) creates events containing no
products, for use in simulations
« Your experiment may have specialized inputs:

— to read file formats (e.g. written by your DAQ system); these will
have specialized sources created to read them;

— to read from a live DAQ system

— to do specialized manipulations of data from the file, before it is
given to the framework

2= Fermilab

16 M. Paterno | Framework Introduction 8/3/15

Services

17

Services provide access to program-wide information or
facilities.

Service can be access (almost) anywhere, at (almost) any
time

— can be used in module constructors

art provides some services

— examples include timing of modules, controlled creation of
ROOT histograms

Your experiment will also provide some services
— Some are provided by LArSoft to many experiments
— Some are completely experiment-specific

— examples include access to geometry information, and
calibration information

2= Fermilab

M. Paterno | Framework Introduction 8/3/15

Making plots (and other analysis tasks)

18

Not all algorithms have to do with
simulation or reconstruction tasks.

Not all algorithms create new data
products for other algorithms.
Some algorithms accumulate
statistics about event data
— calculate statistical summaries for
printing
— mostly, create and fill histograms (or
other types of plots)

The framework provides a module
variety called an analyzer for such
tasks.

M. Paterno | Framework Introduction

Event

product 1

product 2

product 3

product 5

8/3/15

2= Fermilab

The difference between a module type and instance

« A module typeis also a C++ type, that is, a class.
* One can have multiple instances of the same data type:

std::string greeting { “hello” };
std::string farewell { “goodbye” };

« Similarly, a framework program can have two instances of the
same module type:

— Several instances of RootOutput, each writing its own output
art-ROOT data file.

— Several instances of the same tracking algorithm, each with
different values of some configurable parameters.

2= Fermilab

19 M. Paterno | Framework Introduction 8/3/15

Where does your code go?

« Of course, all code goes into a source code repository!

* You only need to have the source code you are modifying
— You are not modifying art itself
— You may be modifying experiment code, or LArSoft code

* Your experiment many have many packages.

« The organization of your experiment’s code determines how
much (or how little) code you need to have access to.

« To make builds fast, it is best to check out only what you have
to, and to use pre-built libraries as much as you can.
— art, ROOT, Geant4, boost, ... many large libraries are provided
pre-built for you.

— If you are using LArSoft (as opposed to modifying it), you can
use the pre-built libraries.

2= Fermilab

20 M. Paterno | Framework Introduction 8/3/15

Getting involved

21

You’re already here. That’s a good start.
Meetings
— your experiment
— art stakeholders
Mailing lists
— art-users@fnal.gov
— artists@fnal.gov
— your own experiment will have one or more lists
Issues (feature requests, bug reports)
— anyone can report a suspected bug
— try to get the report into the right tracker
« experiment code in experiment’s bug tracker
* infrastructure bugs in art issue tracker

— please discuss feature requests within your experiment, or on the art-
users list, before submitting a feature request

2= Fermilab

M. Paterno | Framework Introduction 8/3/15

