
Benchmarks of public and local cloud resources
Davide Grassano

Abstract – When acquiring computing power, either
as bare metal machine or Virtual Machine, a metric
has to be used in order to establish the most cost
effective solution. To establish such metric,
benchmarks have to be used in order to stress the
same components that the final workload will be
using. For a full scale CMS job the ttbar_gensim and
hepspec06 benchmarks were used to compare AWS
instances with local machines in the FermiCloud.
After establishing that the performance per core
obtained were comparable and deciding the best
instance to use, the study moved to the analysis of the
bandwidth throughput of c3.2xlarge instances from
and toward storage systems such as Amazon S3 or
FermiGrid.

I . Introduction

Benchmarking is a commonly used technique to
establish a metric, in order to compare the performance
of machines with different architectures. It is common
practice to use benchmarks when expanding the
computing power of a facility, whether it be by buying
bare metal machine, or by acquiring computing power
from a third party on an on-demand basis.

The former generally requires the employment of
generic and portable benchmarks, as to define the
performance of the hardware at running a wide variety
of tasks, while the latter calls for the use of specific
benchmarks since the machine are bought only for the
duration of a particular job, and should for this be the
best at executing it.

The study here presented regards the benchmarking of
AWS instances and local cloud resources, with the
purpose of using them for a full scale CMS (Compact
Muon Solenoid) job.

The benchmarks used were the ttbar_gensim, which
constitute a reduced version of the first phase of the
job, the hepspec06, a smaller collection of packages
from the more notorious SPEC2006, and some custom
made bandwidth benchmarks

I I . Employed benchmarks

Here is presented a brief description for the
benchmarked used in this study.

A. ttbar_gensim

The gensim benchmark is a reduced version of what
the first phase of a CMS job will be. It acts by
simulating the generation of 150 ttbar events and
storing their data by using up to 100GB.

Because of its nature, this benchmark is not only one of
the most suited to assess the performances of the
machine, but it also allow to monitor if the first phase
of a CMS job will run smoothly without failing.

The results are given as total ttbar/s and ttbar/s per
core, and can also be used to estimate the running time
of a CMS job.

By running the benchmark multiple times on the same
machines, it was determined that the results were very
consistent, with maximum standard deviation obtained
of 2%.

B. hepspec06

The hepspec06 is a subset of the SPEC benchmarks
collection defined by the all_cpp command. The reason
for choosing this benchmark lays in the fact, that the
components stressed by it are the same required for a
CMS job.

Its purpose is to stress the CPU and compiler of the
system, for both integer and floating point calculations
and, with this being a generic benchmark, the obtained
results will be more relatable, allowing for a
comparison of performances with a much wider set of
machines.

The results are given by the HS06 value, which is
obtained by calculating the geometric mean of the
inverted ratios between the running time for each
benchmark in the package and the respective associated
constant. Before calculating the geometric mean, the
ratios are actually averaged over 3 runs of the
benchmarks, in order to obtain a statistic.

C. Bandwidth throughput tests

The bandwidth test have been carried out through the
usage of custom made scripts, that employ the same
transfer protocols and storage systems that will be
adopted during the execution of a CMS job.

Amazon S3 storage is one of the possible solutions for
storing intermediary files that needs to be written by
the first phase of the job and read by the second phase.
In order to test it, the high level ‘aws s3 cp’ command
from the AWS CLI was used to simultaneously transfer
1, 10 and 100 1GB files, from up to 25 VMs at the
same time.

In order to store the final results of the CMS job,
FermiGrid storages have been considered. The globus-
url-copy and xrdcp commands were adopted
respectively to transfer to 2 different servers. Due to

[Type	
 text]	

	

Amazon N_C OR E C OR E 	
 TYP E S peed(GHz) $	
 per	
 hour ttbar/s 	
 per	
 core ttbar/s 	
 total ttbar	
 per	
 $/hHS 06	
 per	
 coreHS 06	
 total HS 06	
 per	
 $/h
m3.xlarge 4 Xeon	
 E 5-­‐2670 2.50 0.266 0.0139 0.0557 0.209 14.3 57.1 215
m3.2xlage 8 Xeon	
 E 5-­‐2670 2.50 0.532 0.0139 0.111 0.208 12.2 97.6 184
m4.xlarge 4 Xeon	
 E 5-­‐2676 2.40 0.252 0.0201 0.0806 0.320 16.1 64.5 256
m4.2xlage 8 Xeon	
 E 5-­‐2676 2.40 0.504 0.0191 0.153 0.304 15.1 121 240
m4.4xlarge 16 Xeon	
 E 5-­‐2676 2.40 1.008 0.0198 0.317 0.315 13.5 217 215
c3.xlarge 4 Xeon	
 E 5-­‐2680 2.80 0.210 0.0153 0.0611 0.291 14.9 59.4 283
c3.2xlage 8 Xeon	
 E 5-­‐2680 2.80 0.420 0.0153 0.122 0.291 14.7 118 281
c3.4xlarge 16 Xeon	
 E 5-­‐2680 2.80 0.840 0.0149 0.239 0.284 13.2 212 252
c4.xlarge 4 Xeon	
 E 5-­‐2666 2.90 0.220 0.0228 0.091 0.415 17.5 69.9 318
c4.2xlage 8 Xeon	
 E 5-­‐2666 2.90 0.441 0.0226 0.181 0.410 16.5 132 300
c4.4xlarge 16 Xeon	
 E 5-­‐2666 2.90 0.882 0.0205 0.327 0.371 14.8 237 268
r3.xlarge 4 Xeon	
 E 5-­‐2670 2.50 0.350 0.0151 0.060 0.172 15.5 62 177
r3.2xlarge 8 Xeon	
 E 5-­‐2670 2.50 0.700 0.0150 0.120 0.171 14.2 114 162
r3.4xlarge 16 Xeon	
 E 5-­‐2670 2.50 1.400 0.0146 0.233 0.166 12.7 203 145
cc2.8xlarge 32 Xeon	
 E 5-­‐2670 2.60 1.090 0.0141 0.450 0.413 11.2 359 329

Table	
 2:	
 Final	
 results	
 from	
 the	
 gensim	
 and	
 hepspec06	
 benchmarks	
 on	
 AWS	
 instances	

bare	
 metal N_C OR E C OR E 	
 TYP E S peed(GHz) ttbar/s 	
 per	
 core ttbar/s 	
 total HS 06	
 per	
 core HS 06	
 total
c loudworker1148 8 Intel	
 XE ON	
 X5355 2.66 0.0179 0.143 8.32 66.5
fnpc2036 8 AMD	
 Opteron	
 2389 2.90 0.0217 0.174 12.0 96.1
fnpc3000 16 AMD	
 Opteron	
 6134 2.30 0.0173 0.277 9.92 159
fnpc4001 32 AMD	
 Opteron	
 6128 2.00 0.0149 0.477 8.64 277
fnpc5009 32 AMD	
 Opteron	
 6134 2.30 0.0162 0.520 9.45 302
fnpc6000 64 AMD	
 Opteron	
 6376 2.30 0.0136 0.873 10.0 640
fnpc7024 64 AMD	
 Opteron	
 6376 2.30 0.0136 0.868 9.49 607
Fermic loud134 1 E 5-­‐2660V2 2.20 0.0193 0.0193 17.9 17.9
Fermic loud148 1 E 5-­‐2660V2 2.20 0.0192 0.0192 17.8 17.8
Fermic loud149 8 E 5-­‐2660V2 2.20 0.0182 0.145 14.3 115
Fermic loud150 1 E 5640 2.60 0.0229 0.0229 18.4 18.4
Fermic loud381 8 E 5640 2.60 0.0217 0.174 15.2 122
prvm0189 1 Intel	
 XE ON	
 X5355 2.66 0.0173 0.0173 13.2 13.2
prvm0190 4 Intel	
 XE ON	
 X5355 2.66 0.0170 0.0680 11.4 45.5
FY2015	
 bid 48 Intel	
 E 2670V3 2.30 0.0195 0.9381
cmswn2000 32 AMD	
 Opteron	
 6134 2.30 0.0167 0.5345 13.21 273.70

the high latency from amazon to this storages, the file
transfers had to be carried out by using multiple
parallel streams, the best number of which was
determined through a study of the parallelism
parameter used by both commands. The globus-url-
copy also allows to set the number of simultaneous
TCP connection to use at the same time. With the aim
of simulating the data transfer of a CMS job, 1, 5, 10
and 20 1GB files were transfer simultaneously to the
storage, from up to 25 VMs at the same time.

I I I . Results
a. Gensim and hepspec06

The results for the gensim and hepspec06 benchmarks
can be found reported in Table	
 2.

The cost model adopted in this analysis is based on the
on-demand pricing of AWS instances, which is
indicative of the ‘0.25 of the on-demand’ algorithm
that is being considered for the spot market, “based on
the study [insert reference here]”.

From the cost effectiveness alone, the best machines
that have been observed would be those from the c4
and cc2 series, but this would be without taking into
account that the c4s are EBS only, which means that
the price of the storage is not included in the one here
presented. For this reason, the c3 instances have been
considered, with particular regards for the c3.2xlarge,
which comes with enough disk space, RAM and
bandwidth to run a CMS job in a cost effective manner.

In order to compare local machines with the AWS
ones, the same benchmarks have been run over the
FermiCloud, for both VM and bare metal, obtaining the
results presented in Table	
 1 that, when compared with
those of Table	
 2, show that the performances of local
and public cloud machines analyzed are similar.

b. Bandwidth test to S3

With this in mind, the study moved to the analysis of
the bandwidth throughput from amazon c3.2xlarge
instances to Amazon S3 and FermiGrid storage
systems.

Table	
 1:	
 Final	
 results	
 from	
 the	
 gensim	
 and	
 hepspec06	
 benchmarks	
 on	
 local	
 Virtual	
 and	
 Bare	
 Metal	
 Machines

[Type	
 text]	

	

The results of the bandwidth analysis for reading from
S3 are reported in Figure	
 1, from which it was
concluded that no matter how much we would stress
Amazon S3 within the capabilities of our AWS
account, we would always get all the requested
bandwidth, with the only limit being the maximum of
1Gbit/s per c3.2xlarge instance.

c. Parallelism and concurrency
analysis

Before moving to the analysis of the bandwidth to
FermiGrid and cmseos, an analysis of the effect of the
parallelism and concurrency parameters was carried
out, in order to obtain the maximum efficacy for the
minimum required number of inbound connections.

	

Figure	
 2:	
 Study	
 of	
 the	
 effect	
 of	
 the	
 parallelism	
 parameter	

over	
 the	
 total	
 throughput	

 From the analys of the data reported in Figure	
 2 and
Figure	
 3 it was concluded that the best solution was to
set parallelism at 4 and concurrency a 5. Any values
higher than this, would cause some of the uploads
request to time out during the bulkier phase of the
benchmarks, for what it is thought to be a problem of
the dCache on the receiving server not being able to

distribute all the required inbound connections.

Figure	
 3:	
 Study	
 of	
 the	
 effect	
 of	
 the	
 concurrency	
 parameter	

over	
 the	
 total	
 throughput	

d. Bandwidth test to FermiGrid
and cmseos

Using the globus-url-copy command toward the fndca1
server, and the xrdcp command toward the cmseos
server, the upload bandwidth throughput from
c3.2xlarge instances toward FermiGrid was analyzed.

	

Figure	
 4:	
 Total	
 throughput	
 analysis	
 of	
 the	
 globus-­‐url-­‐copy	

command	
 toward	
 the	
 fndca1	
 server	

	

Figure	
 5:	
 Total	
 throughput	
 analysis	
 of	
 the	
 xrdcp	
 command	

toward	
 the	
 cmseos	
 server	

The results reported in Figure	
 4 and Figure	
 5 shows
that we were able to reach a maximum bandwidth of
5.6Gbit/s with the globus-url-copy and 7Gbit/s with the
xrdcp to cmseos. The second value being higher than

Figure	
 1:	
 Download	
 bandwidth	
 throughput	
 test	
 from	
 Amazon	

S3	
 to	
 c3.2xlarge	
 instances

[Type	
 text]	

	

the first was an expected results, since the dCache set
up on that server should be better than the other.

IV. Conclusions

Through these studies we were able to determine that
the performances of public cloud resources are
comparable to those of the local ones. It was also
possible to obtain important data that will be used in
order to determine the best solution for running a CMS
job, after taking into account the analysis carried out
over the spot market pricing and percentage of
successful jobs.

If considering that a full CMS job will have 56000 core
running, with each sending a 1GB file over the average
of 8 hour, we have determined that the using c3.2xlarge
instances toward FermiGrid, will give use almost 2.5x
times the amount of required bandwidth, which
demonstrates the fulfillment of one of the requests of
the project stakeholders.

