
REPORT ON THE COLLABORATIVE RESEARCH:

DATA INTENSIVE SCIENTIFIC WORKFLOWS ON A
FEDERATED CLOUD

Submitted to

Korea Insti tute of Science and Technology
Information

245 Daehangno, Yuseon, Daejeon, 305-806,

Republic of Korea

October 31, 2015

Gabriele Garzoglio

Scientif ic Computing Division

Fermi National Accelerator Laboratory, USA

Report No: CRADA FRA 2015-0001/ KISTI-C15005

 Fermilab

Fermi National Accelerator Laboratory
Computing Division P.O. Box 500

Batavia, Illinois 60510

From:
Gabriele Garzoglio
Scientific Computing Division
Fermi National Accelerator Laboratory
Batavia, IL, USA

Oct 30, 2015

To:
Korea Institute of Science and Technology Information
245 Daehangno, Yuseong, Daejeon, 305-806
Republic of Korea

Dear Sir or Madam,

It is with great pleasure that I present to you this report of the Collaborative Research
And Development Agreement with KISTI for 2015 (CRADA FRA 2015-0001/ KISTI-
C15005). The final report, the documentation produced, the papers, and the source code
developed are attached.

The collaboration focused on a multi-year program of research and development for a
federated Cloud computing infrastructure. In the first year, we have demonstrated proof-
of-principle integrations of Cloud and Grid systems to run scientific workflows on
multiple dynamically allocated resources. In this second year, we have extended the scale
and scope of the work, focusing on deployment of on-demand services in support of
scientific computation and demonstrating scalability to 1,000 Virtual Machines on the
Fermilab private Cloud (FermiCloud) and Amazon Web Services. In this third year, we
have focused on the support of data-intensive scientific workflows and started the
integration of the deliverables of all years with the Fermilab HEP Cloud Facility, a
common interface to local resources, Grids, Clouds, and High-Performance Computers.

We look forward to further collaborative initiatives with KISTI and renew our interest
in continuing the joint multi-year program started with this project.

Sincerely,

Gabriele Garzoglio, Ph.D. (Principal Investigator)
Scientific Data Processing Solutions Department, Head
Scientific Computing Division
Fermi National Accelerator Laboratory

REPORT ON THE COLLABORATIVE RESEARCH:
DATA INTENSIVE SCIENTIFIC WORKFLOWS ON A FEDERATED

CLOUD

CRADA FRA 2015-0001 / KISTI-C15005

STEVEN TIMM, GABRIELE GARZOGLIO,
FERMI NATIONAL ACCELERATOR LABORATORY

SEO-YOUNG NOH, HAENG-JIN JANG,

KISTI

Table of Contents

1.!Executive Summary .. 2!
2.!Introduction ... 2!
3.!Technical deliverables ... 2!
3.1. Data-Intensive Scientific Workflows on Federated Clouds ...3
3.2. Interoperability and Federation of Cloud Resources ..5
3.3. On-demand Services for Scientific Workflows ..6

4.!Qualitative and quantitative output ... 7!
5.!Budget Allocation ... 9!
6.!References ... 9!

 !

Report: CRADA FRA 2015-0001 / KISTI-C15005

2 November 2, 2015

1. EXECUTIVE SUMMARY

The Fermilab Scientific Computing Division and the KISTI Global Science experimental Data hub Center are
working on a multi-year Collaborative Research And Development Agreement. With the knowledge developed in
the past years on how to provision and manage a federation of virtual machines through Cloud management
systems, this year they have started to build a large-scale production infrastructure to handle scientific workflows of
stakeholders to run on multiple cloud resources. The demonstrations have been in the areas of (a) Data-Intensive
Scientific Workflows on Federated Clouds, (b) Interoperability and Federation of Cloud Resources, and (c) Virtual
Infrastructure Automation to enable On-Demand Services. This is a matching fund project in which Fermilab and
KISTI will contribute equal resources.

2. INTRODUCTION

The Cloud computing paradigm has revolutionized the approach to Information Technology in many sectors of
society, from telecommunication to the military to science. In particular for science, national laboratories,
computing centers and universities in many countries are adapting their current paradigm on distributed computing,
extending the reach for remote resource to integrate the Grid model of federated resources [1,2], the allocation-based
model for national leadership-class machines, and the Cloud model of on-lease dynamically instantiated resources
from private and commercial entities.

For institutions such as KISTI and Fermilab, the focus on Cloud computing is dictated by the need for more
efficient support of individual large user communities (e.g. the LHC experiments) together with many medium size
ones (e.g. the Intensity Frontier experiments). With each community requiring slightly different configurations for
their computational environment, the use of dynamically instantiated virtual machines managed through a Cloud
layer becomes an attractive solution to enable such diversity. In addition, year after year computing budgets fall
short of providing the capital funds necessary to build or significantly extend new computing centers and satisfy the
needs for timely access to massive resources. In reaction, more and more research institutions find it necessary to
dedicate operational funds to extend the statically allocated resources under their control with Clouds to provide
resource-burst capacity. In the end, to address the need for flexibility, the capability of the Cloud paradigm to
instantiate computing services on-demand on a federated pool of computing hosts provides a valuable solution.

KISTI and Fermilab have been collaborating on Cloud computing since 2011. In 2013, this collaboration resulted
in a formal Collaborative Research And Development Agreement (CRADA) for a multi-year program of work to
offer production-quality on-demand computing services to their scientific stakeholders. The vision is to provide
layered services on a federation of Clouds, provisioning execution environment on a fabric of local and remote
resources, with the scientists interacting with the Software as a Service layer.

This year, Fermilab fully embraced this vision by initiating the Fermilab HEP Cloud Facility project. The Facility
will integrate local resources with Grids, high-performance computing centers, and Clouds. Each resource type has
its own characteristics that make it attractive for a broad range of workflow requirements. Grids are large number of
statically allocated resources that follow a trust federation model; opportunistic cycles are available but never
guaranteed. High-performance computers follow strict allocation processes and provide large resource capacity over
a homogeneous-architecture for the allocation recipients. Clouds provide the flexibility of virtual environment with a
pay-as-you-go model best suited for bursts of resource needs.

For the focus on commercial Clouds, the goals of the collaboration with KISTI have been extremely well aligned
with the goals of the HEP Cloud Facility project. This report discusses how the work for this third year on Cloud
federations enables effective handling of data-intensive workflows. In the years to come we envision an increase in
both the diversity of resource providers and the scale of utilization, improving our ability to use Facility portals to
federate resources and deploy ensembles of complex services in support scientific computation.

3. TECHNICAL DELIVERABLES

The technical deliverables for the CRADA project of this year had to be adjusted to reflect the focus on Cloud
bursting of the HEP Cloud Facility project. Most of the deliverable described in the proposal were well aligned with
the goals of the two projects and were successfully completed. The deliverables focusing on investigations to
improve local Infrastructure as a Service (IaaS) Facilities and commercial Clouds, other than Amazon Web Services,
have been worked at a low priority, resulting in incomplete deliverables.

The adjusted program of work for the third year of the agreement consisted in demonstrations and studies to build
a production scale infrastructure to run scientific workflows on dynamically provisioned resources. The work was

Report: CRADA FRA 2015-0001 / KISTI-C15005

3 November 2, 2015

organized in three major areas: (1) Data-Intensive Workflow Integration; (2) Interoperability and Federation; (3)
Automation and On-Demand Services.

1. Data-Intensive Scientific Workflows on Federated Clouds focuses on developing and integrating

mechanisms to support the execution of scientific workflows with large data processing needs. The
deliverables for this area are the following:

a. Cost-sensitive provisioning on the AWS spot market: focus the previous studies on cost-sensitive
provisioning algorithms to identify optimal bidding strategies to provision resources on the AWS
spot market. Hao Wu, a PhD student from the Illinois Institute of Technology is focusing his
research on this topic. The results of his research this year have been accepted at the MTAGS
workshop as a paper jointly authored with KISTI [27].

b. Investigate execution of workflows for CERN LHC experiments: the HEP Cloud Facility is
preparing to run Monte Carlo workflows on AWS and Fermilab resources at the scale of 56,000
cores (25% of global capacity) for one month in December. A demonstration at Supercomputing
2015 will show the capability of gCloud at KISTI to be integrated with the activity (see below).

c. Integration of RnD infrastructure with HEP Cloud Facility: run scientific workflows on federated
cloud resources via GlideinWMS [4,8] and cloud web services API’s. This activity demonstrates that
workflows for CMS and NOvA experiment can take advantage of Cloud resources for their
computational peaks through the HEP Cloud Facility infrastructure.

2. Interoperability and Federation of Cloud Resources consists in finding a set of virtual image formats and
application programming interfaces that can be used by all members of a virtual organization across a
heterogeneous infrastructure. The deliverables for this area are the following:

a. Improve data management by developing strategies to interact with AWS Simple Storage Service
(S3) effectively: develop tools to use AWS S3 as a Storage Element fully integrated with the
experiments data management services.

b. Demonstrate a federated Cloud between Fermilab and KISTI: a demonstration at SC2015 will show
the federation capabilities between the HEP Cloud Facility at FNAL and gCloud at KISTI, running
CMS Monte Carlo workflows.

c. VM image portability: improve AWS authentication mechanism of the automatic virtual machine
image format conversion tool developed in 2014.

d. Perform benchmarks of Fermilab and AWS computing infrastructure: the results are used to scale
the expected execution times and evaluate costs more accurately [31].

3. Virtual Infrastructure Automation for On-demand Services aims at finding the most efficient methods for
scientific grid and cloud computing middleware to distribute data and execution across the WAN to meet the
demand. The deliverables for this area are the following:

a. Provisioning of a platform of services: transition the mechanism to provision complicated ensembles
of virtual machines in support of scientific workflows to use native AWS orchestration services
(CloudFormation). This mechanism was applied to web caching services and provides automatic
service discovery and scaling based on demand [31].

b. Improve the accounting and monitoring infrastructure: AWS provides accounting infrastructure to
track cost by VM and services used; the additional infrastructure developed by this CRADA allows
to compare user job execution time with overall VM running time and associate costs directly with
scientific workflow execution

The following sections describe in more detail these demonstrations and studies.

3.1. Data-Intensive Scientific Workflows on Federated Clouds

Cost-sensitive provisioning
The work on provisioning focused on evaluating strategies to complete a scientific workflow while optimizing the

cost of provisioning VM on the AWS spot market. This is an auction-based market that allows users to bid for
provisioning VMs on AWS excess resource capacity. Bids target a certain instance type i.e. a given configuration of
number of cores, RAM, local disk, network interfaces, etc. Successful bids provision resources for as low as one
tenth of the on-demand price. The system, however, does not guarantee continuous availability, as the VM can be
preempted in case of scarce excess capacity and the bid request being outbid. Different strategies balance the
tradeoff between bidding low and expecting long availability of the resource to complete the workflow. The results

Report: CRADA FRA 2015-0001 / KISTI-C15005

4 November 2, 2015

of this research, lead by Hao Wu, have been accepted at the MTAGS workshop as a paper jointly authored with
KISTI [27].

For this work we have developed a full EC2 spot instance simulator that uses real EC2 spot pricing history to
emulate the spot instance life cycle and expected charges. We reviewed eight of the most popular bidding strategies
in both literature and practice and compare them in terms of cost, deadline miss rate, and task execution length for
scientific workflows. The different bidding strategies were tested for jobs lasting 5, 10, and 24 hours.

Bidding strategies were categorized as static and dynamic. Static strategies bid a constant price i.e. the bid does
not change as the market price changes. Examples of static strategies are bidding at a fraction (e.g. 25%) of the on-
demand price, at the on-demand price or above (e.g. 10x), or at the historical minimum for a resource type. Dynamic
strategies adjust the bidding prices according to application execution requirements and market prices. An example
is an algorithm that finds the cheapest instance type across AWS availability zones and resource types; it then bids
that price or withdraws the bid if it is below a certain threshold.

Different strategies result in different probabilities of completion (assuming to resubmit failed jobs for one week),
cost (as compared to the on demand price), and overall completion time (incomplete jobs must be resubmitted and
already incurred a cost). To give a sense of the results for 10 hours jobs, the strategy of bidding at 25% of the on
demand price results in 48% incomplete jobs at the cost of 11% the on demand price and 1.9 days of overall
execution time. For comparison, bidding at the on demand price results in 22% incomplete jobs with a cost of 20%
on demand price and 1.2 days of execution time.

Our study concluded that in practice the dynamic bidding algorithms do not perform any better than the static
bidding algorithms, as they are based on assumptions that do not always hold in reality. For instance, most dynamic
algorithms assume that checkpointing can be performed before the instance is preempted. As for the static bidding
algorithms, the one that we evaluate to have the best tradeoff between success rate, cost, and overall execution time
is bidding at 25% of the on-demand price.

This study will continue to study the impact of large-scale bids, which by themselves may influence the market,
and extend the evaluation to include bidding across availability zones.

Investigate execution of workflows for CERN LHC experiments
The CMS Experiment at CERN and the Fermilab Scientific Computing Division have agreed to work together on

an urgent large-scale cloud computing use case for their experiment. Due to the restart of the Large Hadron Collider
experiment at CERN in 2015, it is now at a higher-beam energy than previously. It will also have higher luminosity
and different beam parameters, such as beam spot location. The experiment needs a large amount of initial Monte
Carlo simulation and reconstruction to best utilize data from the new run. The initial proposal suggested a
simulation of 109 events through the full chain of generation and simulation (GENSIM), digitization and
reconstruction (DIGIRECO) in the CMS detector. This is estimated to take 56,000 compute cores running
simultaneously for one month. The full simulation workflow would require fairly little input and produce an output
of approximately 800TB of data. The CMS collaboration has also considered doing digitization and reconstruction
of Monte Carlo that had already been generated and also reconstruction of raw data. Both of these applications take
less compute time to complete and require more data transfer.

There is an agreed program of work between the Fermilab HEP Cloud Facility Project and CMS computing. CMS
have responsibility for data movement to and from S3 and enhancements to their workflow management agents, as
well as experiment-specific monitoring. The HEP Cloud Facility project has responsibility for procuring the
Amazon services, providing the virtual machines to run the scientific workflows, the on demand services and
monitoring, as well as the submission and provisioning facilities.

The early tests used a 30-minute CMS job that performed the GENSIM step on a small number of events. We
were able to run this test job successfully both on Amazon Web Services and on KISTI’s GCloud. As of this
writing, further testing awaits a more complicated workflow to be delivered by CMS for cloud submission.

Integration of RnD infrastructure with HEP Cloud Facility
The research and development conducted by the collaboration in the past 3 years in the field of commercial clouds

is fundamental to the deployment of the Fermilab HEP Cloud Facility. In particular, the experience of running
scientific workflows for the NOvA experiment in 2014 set the expectations for scale in 2015 and 2016. At that time,
we have demonstrated that we could run a federation of 1,000 VM simultaneously between FermiCloud and AWS.
As described in the 2014 report, native OpenNebula v4.8 commands can fill the cluster with 1,000 VM in 30
minutes. FermiCloud and AWS test jobs processed a total of 20,000 Monte Carlo configuration files, reaching the
limit of 1000 simultaneously running VMS (1 job/VM) on FermiCloud and 1000 simultaneously running jobs (2
jobs/VM) on AWS.

Report: CRADA FRA 2015-0001 / KISTI-C15005

5 November 2, 2015

In virtue of this experience, we have prepared the HEP Cloud Facility to sustain the bursts of capacity of up to
56,000 cores for CMS. For NOvA, we have submitted and were granted a request for funding to integrate further
NOvA scientific workflows with AWS. The plan is to show both the reliability of AWS as well as burst capacity.
For the reliability, we plan to run multiple campaigns throughout the year and validate that AWS resources are at
least as available as local Fermilab resources. For resource burst, we plan to run simulations of the NOvA near-
detector, processing 60,000 configuration files in our initial trials. The integration of the NOvA submission
infrastructure (jobsub) with HEP Cloud is in progress. This way, the user interface to direct scientific jobs to AWS
can be initially defined as a submission command option and, eventually, as an administrative policy.

3.2. Interoperability and Federation of Cloud Resources

Improve data management by developing strategies to interact with AWS Simple Storage Service (S3) effectively
The collaboration has developed mechanisms for the data management systems of the experiments to use AWS S3

as a repository of data. The collaboration has conducted investigations to use AWS S3 for data input and output.
Output handling has been described in the “data movement on-demand” section of the year-2 report. It discusses

the trade off of jobs storing output data to S3 and stream it back to archive after the job is terminated vs. sending
data directly back to archive from the job. For our parameter space, considering the high-bandwidth connection with
S3 and high write capacity of the archival storage at Fermilab, transferring the data back directly from the jobs is the
most effective strategy.

Input handling has been analyzed in the tradeoff between staging data to S3 before jobs access it vs. transferring
data directly from the archive (e.g. Fermilab storage) to the job. There is no charge to transfer data to AWS in either
case. The tradeoffs for input data are similar as to output data. In the first case, data storage charges apply, while in
the second virtual machines may run idle waiting for input. The optimal strategy depends on the effective bandwidth
from storage, the number of jobs, the amount of data, and how long the data needs to be in S3.

Considering that direct job input has been proven to work in 2014, we developed tools for the scientific
workflows to interact with S3. In particular we have (1) developed a stage-in mechanism to transfer datasets to S3 in
bulk using SAM, the data handling system of the Intensity Frontier experiments and (2) integrated S3 with ifdh, the
abstraction layer used by Intensity Frontier jobs to transfer data locally from storage. At a high-level, the stage-in
tool transfers a dataset to S3 and declares the new location in SAM. This way, jobs processing that dataset are given
the S3 location for those files by SAM and use ifdh to access them.

In order to maximize network throughput, the stage-in tool launches a number of parallel processes on different
machines to initiate the upload to S3. Currently, these machines are worker nodes from the Fermilab general-
purpose cluster. The tool was tested by staging in an input dataset for the NOvA experiment consisting of 18,900
files for 1.4 TB of data from the Fermilab dCache archive. The test used 40 nodes with 1 transfer process each. The
maximum throughput was reached with 25 transfers, staging in the dataset in 45 minutes with an average throughput
of 4.1 Gbps.

The number of processes and worker nodes should be further tuned to maximize the use of network interfaces and
minimizing the total number of machines provisioned for the transfer.

Demonstrate a federated Cloud between Fermilab and KISTI
The ability to integrate resources at KISTI and Fermilab through a common Cloud management framework will

be demonstrated at SuperComputing 2015 (SC15) (Austin, TX, USA – Nov 16-19, 2015). The Fermilab HEP Cloud
Facility is used as the Cloud management and integration platform. Based on the glideinWMS framework, the
facility can configure different end points for the provisioning of resources. It is planned that the demonstration will
provide a proof-of-principle usage of approximately two hundred cores at two endpoints: AWS and gCloud, an
OpenStack deployment at KISTI.

Simulation workflows for the CMS experiments will be submitted to the Fermilab HEP Cloud facility and
distributed to AWS and gCloud. As virtual machines are instantiated at KISTI, the CMS software distribution will
be made available through the CERN Virtual Machine File System (CVMFS), configured to rely on the Squid
deployments of the CMS Tier 3 at KISTI for data caching. Jobs are envisioned to last about 30 minutes and transport
results back to Fermilab storage for archiving.

Regular biweekly videoconferences throughout the year have enabled the KISTI and Fermilab teams to exchange
knowledge and ideas on the project deliverables and, in particular, coordinate the preparations for the demonstration.
The demonstration will rely on monitoring displays for OpenStack, the Fermilab HEP Cloud Facility, and AWS to

Report: CRADA FRA 2015-0001 / KISTI-C15005

6 November 2, 2015

showcase the ability of the system to federate across community and commercial Clouds. Joint members of KISTI
and Fermilab will present the demonstration at the KISTI booth at SC15.

Virtual machine image portability
At the beginning of this year we had a three-stage image creation system that served both FermiCloud and AWS

images. It had been developed in the second year of the CRADA. The existing system, however, was slow in the
stage that transitioned the VM from FermiCloud to AWS and also was prone to failing on various error conditions.
It also was not using the current releases of the Amazon SDK.

Significant improvements that were made include the following. We switched to use HVM virtualization
(hardware virtual machine under the Xen hypervisor) on AWS. This enables access to all of the resources available
at Amazon, rather than the small percentage of the resources that support the paravirtualized kernel that we were
previously using. We shrunk the size of the default VM from 13GB to 7 GB, thus saving import time and cost while
running. We audited the steps in the import process and cleaned out several that were no longer necessary. We
extended the process to cover multiple Amazon accounts and regions. We rewrote the Amazon import routine to use
the Python SDK rather than the command-line utilities and implemented a more secure method of presenting
credentials to the cloud using short-lived tokens. We extended the ephemeral storage detection utility to detect the
presence of multiple scratch devices on a virtual machine; this way, those ephemeral storage mounts survive a
reboot/restart of the virtual machine. We also added a new custom initialization script to detect the location of the
on-demand squid services at launch time and modify configuration files accordingly.

The improved conversion tool is a version strengthened for production use and will be used for the operations of
the Fermilab HEP Cloud Facility. With minor modifications the virtual machine images it produces are also being
used at gCloud for the SC2015 demo.

Perform benchmarks of Fermilab and AWS computing infrastructure
A key piece of information in deciding when to run on the cloud is having good estimates of the relative

performance of cloud virtual machines compared to local hardware. For this purpose we used two CPU benchmarks:
the TTBAR and HEPSPEC06 (HS06) benchmarks. TTBAR is the stock benchmark that has been used for years by
CMS to specify the performance of new physical hardware for purchase. It consists of a self-contained tarball that
runs GENSIM to generate 150 top/antitop quark events. HS06 is a subset of the SPEC CPU2006 benchmark that
includes only those benchmarks that are written in C++. It is a standard benchmark published by most hardware
vendors. For the most part, we found that the two CPU benchmarks agree with each other in describing the
performance of cloud virtual machines. Also, cloud virtual machines scale as expected i.e. if a 4-core VM and a 16-
core VM of the same architecture are compared, the performance is 4 times as much.

Equally important is the bandwidth available to the AWS Simple Storage Service (S3) and from AWS to
Fermilab’s archive. Long transfer times translate to increased costs, as one pays for virtual machines that are
waiting to transfer their files. We measured a number of reads and writes to the S3 service, looking not only for total
bandwidth but also if we would get any outright failures to read. We did not observe any failures within the range
we tested. As far as network bandwidth is concerned, we are using an open network topology, using normal Internet
routing to get from AWS to Fermilab via the ESNet Research network, which is peered with AWS facilities at
several US points of presence. We observed up to 7Gbps of throughput from Amazon to the disks of our archive,
twice what we believe is needed for our biggest CMS use case [31].

3.3. On-demand Services for Scientific Workflows

Provisioning of a platform of services
In year 1 we launched individual instances of virtual machines. In year 2, we started to deploy them as an

ensemble, together with the services that they rely on for scalability, focusing on Squid for web caching. For the
discovery of the Squid servers at AWS, we deployed Shoal [23] at Fermilab, a naming service for Squid. In year 3,
we refined the provisioning of virtual machines as ensembles by using native AWS services to automate the
deployment and on-demand scaling of Squid servers [24]. This way, the Fermilab operational team does not need to
maintain local infrastructure anymore.

Squid servers are deployed as virtual machines in every AWS Availability Zone (AZ) selected to execute
scientific workflows. The servers are part of an “Auto-scaling Group”, an AWS service that automatically deploys
or removes virtual machines depending on client demand. The demand is determined by measuring the average data

Report: CRADA FRA 2015-0001 / KISTI-C15005

7 November 2, 2015

throughput out of the virtual network interfaces of the Squid server VM’s. When the throughput is above or below a
set threshold, the Auto-scaling Group instantiates or removes Squid servers. CloudWatch, the AWS monitoring
service, provides the measurement of throughput. Within an AZ, all Squid servers are available through a single
“Elastic Load Balancer” (ELB). In our setting, ELB were tested to sustain 500,000 requests per minute, a rate above
our requirements. The “Auto-scaling Group” updates the configuration of the ELB to maintain it up to date with the
deployed Squid servers. “Route 53”, the AWS Domain Name Service, defines a unique name for the ELB’s in each
AZ. All these services are deployed as an ensemble through “CloudFormation”, the AWS service that enables the
scripting of service and resource deployments.

The VM’s running scientific workflows are clients of the Squid servers. They use web caching to access
calibration constants through the Frontier system and scientific software through the CERN Virtual Machine File
System (CVMFS). At boot time, a client VM detects the AZ in which it was deployed [26]. With this information, it
configures the environment defining its web proxy to the ELB for that AZ.

Squid servers were deployed on VM of types m3.large and m3.xlarge to measure their performance. Types with
more cores, memory, and disk available are more costly but can serve more clients. Considering our requirement of
running CMS scientific workflows on 56,000 cores, we opted to use m3.xlarge types. In our load tests we scaled up
to 3 of these servers, each of which served 1 Gbps of data to 16 total clients. With the deployment scheme discussed
above, they are automatically scaled up as clients increase the demand. The network throughput was found to be
equal to the hardware capacity of the virtual machines to serve data; the Elastic Load Balancing structure did not add
any overhead.

Improve the accounting and monitoring infrastructure
To provide a comprehensive view of resource utilization, we want to track the use of Cloud resources with similar

interfaces as for Grid resources. Unlike a typical Grid resource, however, access to AWS is not gated through a
compute element interface, thus we cannot reuse accounting probes that track the number of batch slots used by each
virtual organization. Using the earlier OpenNebula probe written for FermiCloud, we developed a similar probe to
track the numbers of virtual machines launched, their start and stop times, their CPU efficiency, their termination
codes, and the cost we pay for each. Data is collected once per virtual machine per hour and stored in a Usage
Record similar to that used in Grid computing. This probe is written in Python and uses the BOTO toolkit to
communicate with AWS.

Similar code was used for a monitoring script to collect data every 5 minutes on running VM’s in the cloud and
their CPU efficiency. The numbers collected are then sent to the “Graphite” monitoring server and formatted for
graphical display. The display allows filtering by account number, region, availability zone, instance type, or virtual
organization. There is a corresponding probe running on the HTCondor collector/negotiator of HEP Cloud to show
the number of actual virtual machines that report back to Fermilab. The Graphite server is also used to display and
store historical pricing information of AWS.

4. QUALITATIVE AND QUANTITATIVE OUTPUT

In the past three years, the collaboration between Fermilab and KISTI has produced several results in the areas of
Cloud computing. The main achievement this year consists in the integration of the techniques and methods
developed for resource Cloud bursting with the Fermilab HEP Cloud Facility. The Facility will become the
production infrastructure at Fermilab to interact with remote resources. For December, the Facility is preparing to
run at the scale of 7,000 VM and 56,000 cores for the CMS and NOvA experiments.

Quantitative considerations:
This year the collaboration has worked on five papers. It has published one at the Workshop on Many-Task

Computing on Clouds, Grids and Supercomputers (MTAGS) [27]; one at the International Symposium on Grids and
Clouds (ISGC2015) [29]; two at Computing in High-Energy Physics (CHEP2015) [18, 30]; and another submitted
to the IEEE International Parallel and Distributed Processing Symposium (IPDPS) [31]. In addition, the papers
submitted to the journal “IEEE transactions on Cloud computing” [12, 13] in 2014 as a deliverable for the second
year of the CRADA have been accepted.

In summary, the three-years program has produced 13 papers to date, adding these five to the eight published in
the first two years [6, 7, 19, 9, 10, 11, 12, 13].

Report: CRADA FRA 2015-0001 / KISTI-C15005

8 November 2, 2015

The work from the third year was presented at five talks [18, 27, 28, 29, 30] with one more talk submitted for June
2016 at IPDPS [31]. If that is accepted, the overall 3 years program will have been presented at 14 talks, adding
these four to the ten from the first two years [10, 11, 14, 15, 16, 17, 18, 19, 20, 21].

We also made available all documentation produced [24, 25], including this report. In addition, all the code [26] is
available from the code repository of the Fermilab HEP Cloud project or github.com. The code consists of the
following: an improved version of the automated virtual machine image format conversion tool; the code to enable a
virtual machine to detect its Availability Zone and point to the appropriate on-demand Squid service for web
caching (“ondemandservices” repository); the code to send accounting and monitoring information about
instantiated virtual machines and their resource usage (“monitoringaccountingbilling” repository); the code to
download the history of the AWS spot price market (“spotpricehistory” repository); the scripts to benchmark the
performance of computing resources and storage at AWS for the comparison with Fermilab resources
(“predictionengine” repository).

Qualitative considerations:
Build relationships with cloud facilities in US and Pacific Rim: this year we have coordinated the joint work of

KISTI and Fermilab through regular biweekly phone conferences, at which engineers and managers could express
and exchange views and information on relevant topics for the collaboration. We believe that Fermilab’s experience
in conducting a larger acquisition of allocations on Amazon Web Service has aspects of relevance for KISTI. This
acquisition has led to obtaining substantial cost reductions applicable to research institutions. In particular, AWS has
implemented the discount for outgoing network traffic through ESNet (our main research network provider) and
Internet2. In addition, we have applied and were granted funding from AWS for both NOvA and CMS to bootstrap
the use of Cloud computing for scientific computation at the scalability level discussed above (56,000 cores).

Optimize data path access to cloud: with the recent upgrade of one of the three AWS peering points with ESNet to
100 Gbps in Seattle, the opportunity to seamlessly integrate the Network of the National Laboratories with
Commercial clouds becomes attractive. We have explored three possible solutions: using the general Internet, AWS
DirectConnect, and Virtual Private Networks (VPNs) with both configurations. All solutions have different
characteristics in terms of network shaping and policy. In particular, network shaping is relevant as the data egress
waiver with AWS explicitly applies for traffic going mostly through ESNet and Internet2. Violations of the
agreement on the traffic invalidate the waiver. Using the general Internet, the options to configure network routes is
limited to expressing firewall rules to prevent traffic to locations outside of the ESNet network. This form of access
is provided for free. On the other hand, DirectConnect provides sets of dedicated connections into the AWS network
for a fee. This form of access enables full network routing and the hosting of address space owned by the remote
institution at AWS. While this may facilitate the integration of the networks, it generates concerns related to the
reuse of in-house security controls to operate remotely. These same concerns apply for VPN access. To mitigate
these concerns, AWS has received FedRAMP certification, demonstrating its ability to secure its environment at the
level requested by the US Government. The integration of the security controls, however, will require time; thus the
Direct Connect and VPN options are not currently viable in our environment. Despite the lack of bandwidth
guarantees and network shaping in the integration through the general Internet, our tests show that we can achieve a
bandwidth of at least 7 Gbps and we can use firewall rules at AWS to prevent data egress waiver violations. This
should be sufficient to address our use cases until at least the next fiscal year.

Identify scalability issues of cloud Application Programming Interfaces: This year we have focused on accessing
the AWS interfaces to provision services and resources. We have tested the performance and reliability of the AWS
Simple Storage Service (S3) in the context of our benchmarking activities without exposing any errors from the
service. As observed in previous years, we are confident on the ability of AWS to scale to 1,000 VMs to address our
use cases. We are now starting the scale up of the testing to the final production scale of 7,000 VMS and 56,000
cores.

Create virtual infrastructure able to interoperate with leading commercial and scientific cloud facilities: the goal of
the Fermilab HEP Cloud Facility project is to provide a common user interface to a range of back end facility types.
These include commercial and scientific Clouds, as well as Grid resources and High Performance Computers. While
we have already demonstrated our ability to execute workflows at the scale of 1,000 VM between Fermilab and
AWS in 2014, the regular use of the Facility for the NOvA and CMS use cases will also show this capability. In the
context of this collaboration, we are demonstrating the integration of AWS and KISTI GCloud through the HEP
Cloud Facility as a demonstration at SuperComputing 2016.

Report: CRADA FRA 2015-0001 / KISTI-C15005

9 November 2, 2015

5. BUDGET ALLOCATION

A. Fermilab-funded effort: TOTAL INDIRECT COSTS Fermi Research Alliance, LLC (FRA) / Fermilab
FY2015 provisional indirect cost rate is currently 85.29% (Salaries – SWF), 17.09% (Travel), and 23.53%
(Other Material & Services – M&S) of Modified Total Direct Cost, in accordance with Fermilab's contract
with the Fermi Research Alliance, LLC (FRA) and the Department of Energy.
The budgeted amount to contribute $100,000 of direct costs (equivalent to $185,000 with indirect cost) was
estimated at 7.2 FTE-months. The table below shows effort until the end of October.

PERSON ADJUSTED EFFORT, FTE-Months (to Oct 31, 2015)
Garzoglio, Gabriele 0.94
Kim, Hyun Woo 3.93
Timm, Steven 3.78
TOTAL 8.65

B. Obligated funds provided by KISTI as of Oct 2015 - Indicative report!

3 IIT students for the summer (Rahul Krishnamurthy, Shivakumar Vinayagam, Hao Wu) $33540
1 INFN student for the summer (Davide Grassano) (labor, housing, transportation) $6,016
1 consultant for the summer (Eric Graubins) $35,200
Computing cycles at Amazon Web Services * $333
Travel * $4,906
TOTAL DIRECT COST $79,996
INDIRECT COST (17.09% on Travel; 23.53% on other M&S; 85.29% on SWF) $17,091
DOE ADMINISTRATIVE FEE (3%) $2,913
INDICATIVE TOTAL $100,000
!

* Not all obligated money has yet been invoiced by the vendors or paid out. Some expenses (such as travel to
KISTI) will be reconciled in November. The complete financial report will be available on December.

6. REFERENCES

[1] Pordes, R. et al. (2007). The Open Science Grid, J. Phys. Conf. Ser. 78, 012057.doi:10.1088/1742-
6596/78/1/012057.

[2] Kranzlmüller, D., J. Marco de Lucas, and P. Öster. "The European Grid Initiative (EGI)." In Remote
Instrumentation and Virtual Laboratories, pp. 61-66. Springer US, 2010.

[3] Virtual machine interoperability documentation: http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=5208
[4] Sfiligoi, I., Bradley, D. C., Holzman, B., Mhashilkar, P., Padhi, S. and Wurthwein, F. (2009). The Pilot Way to

Grid Resources Using glideinWMS, 2009 WRI World Congress on Computer Science and Information
Engineering, Vol. 2, pp. 428–432. doi:10.1109/CSIE.2009.950.

[5] Seo-Young Noh, Steven C. Timm, Haeng-jin Jang: vcluster: A Framework for Auto Scalable Virtual Cluster
System in Heterogeneous Clouds, in Cluster Computing (2013).

[6] Hao Wu, Shangping Ren, Gabriele Garzoglio, Steven Timm, Gerard Bernabeu, Hyun Woo Kim, Keith
Chadwick, Seo-Young Noh, Haeng-Jin Jang, Automatic Cloud Bursting Under FermiCloud, ICPADS CSS
workshop, Seoul, 2013, published in IEEE Xplore Digital Library, DOI: 10.1109/ICPADS.2013.121

[7] S. Timm, K. Chadwick, G. Garzoglio, Grids, Clouds and Virtualization at Fermilab, accepted in the Proceedings
of the Journal of Physics: Conference Series by IOP Publishing, 2013.

[8] P. Mhashilkar, A. Tiradani, B. Holzman, K. Larson, I. Sfiligoi, M. Rynge, Cloud Bursting with Glideinwms:
Means to satisfy ever increasing computing needs for Scientific Workflows, accepted in the Proceedings of the
Journal of Physics: Conference Series by IOP Publishing, 2013

[9] Hao Wu, Shangping Ren, Steven Timm, Gabriele Garzoglio, Seo-Young Noh, Overhead-Aware-Best-Fit
(OABF) Resource Allocation Algorithm for Minimizing VM Launching Overhead, 7th Workshop on Many-Task
Computing on Clouds, Grids, and Supercomputers (MTAGS) 2014, Nov 2014, New Orleans, Louisiana, USA

[10] Hyunwoo Kim, Steve Timm, X.509 Authentication/Authorization in FermiCloud, IEEE 1st International
Workshop on Cloud Federation Management, Dec 2014, London, UK

Report: CRADA FRA 2015-0001 / KISTI-C15005

10 November 2, 2015

[11] Hao Wu, Shangping Ren, Gabriele Garzoglio, Steve Timm, Gerard Bernabeu, Seo-Young Noh, Modeling the
Virtual Machine Launching Overhead under Fermicloud, 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2014), May, 2014, Chicago, IL, USA

[12] Hao Wu, Shangping Ren, Gabriele Garzoglio, Steve Timm, Gerard Bernabeu, Keith Chadwick, Seo-Young
Noh, A Reference Model for Virtual Machine Launching Overhead, IEEE Transactions on Cloud Computing,
2014, DOI: 10.1109/TCC.2014.2369439

[13] Sadooghi, Iman; Hernandez Martin, Jesus; Li, Tonglin; Brandstatter, Kevin; Zhao, Yong; Maheshwari, Ketan;
Raicu, Ioan; Pais Pitta de Lacerda Ruivo, Tiago; Garzoglio, Gabriele; Timm, Steven, Understanding the
Performance and Potential of Cloud Computing for Scientific Applications, IEEE Transactions on Cloud
Computing, 2015, DOI 10.1109/TCC.2015.2404821

[14] G. Garzoglio, On-demand Services for the Scientific Program at Fermilab, International Symposium on Grids
and Clouds 2014 (ISGC 2014), March 2014, Taipei, Taiwan

[15] S. Timm, G. Garzoglio, FermiCloud On-demand Services: Data-Intensive Computing on Public and Private
Clouds, HEPiX Spring 2014 Workshop, May 2014, Annecy-le-Vieux, France

[16] S. Timm, G. Garzoglio, FermiCloud On-demand Services: Data-Intensive Computing on Public and Private
Clouds, Computing Technique Seminar at CERN, May 2014, Geneva, Switzerland

[17] S. Timm, Authentication, Authorization, and Federation in OpenNebula with FermiCloud, OpenNebula Conf
2014, Dec 2014, Berlin, Germany

[18] S. Timm, G. Garzoglio, P. Mhashilkar, J. Boyd, G. Bernabeu, N. Sharma, N. Peregonow, H. Kim, S-Y. Noh, S.
Palur, Cloud services for the Fermilab scientific stakeholders, proceedings of Computing in High-Energy
Physics 2015 (CHEP15), Apr 2015, Okinawa, Japan

[19] Tiago Pais Pitta de Lacerda Ruivo, Gerard Bernabeu, Gabriele Garzoglio, Steve Timm, Hyunwoo Kim, Seo-
Young Noh, Ioan Raicu, Exploring Infiniband Hardware Virtualization in OpenNebula towards Efficient High-
Performance Computing, 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid 2014), May, 2014, Chicago, IL, USA

[20] Timm, S. (2013, Sep 23) High Throughput and Resilient Fabric Deployments on FermiCloud, invited talk at
ISC Cloud 2013 symposium, Heidelberg, Germany.
https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=5202

[21] Timm, S. (2013, Sep. 24) Enabling Scientific Workflows on FermiCloud using OpenNebula, keynote talk at
OpenNebulaConf 2013, Berlin, Germany. https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=5203

[22] Daniel van der Ster, Arne Wiebalck, Building an organic block storage service at CERN with Ceph, presented
at the 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013), pub.
Journal of Physics: Conference Series 513 (2014) 042047, doi:10.1088/1742-6596/513/4/042047

[23] Fermilab DocDB: Sandeep Palur - Squid and Shoal Server Documentation – http://cd-docdb.fnal.gov/cgi-
bin/ShowDocument?docid=5428

[24] Fermilab DocDB: Autoscaling tests of squid servers – http://cd-docdb.fnal.gov/cgi-
bin/ShowDocument?docid=5611

[25] Fermilab DocDB: Final Report – Benchmarking of cloud and local resources – http://cd-docdb.fnal.gov/cgi-
bin/ShowDocument?docid=5611

[26] Fermilab DocDB: All Code printout – http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=5611
[27] H. Wu, S. Ren, S. Timm, G. Garzoglio, S. Noh, Experimental Study of Bidding Strategies for Scientific

Workflows using AWS Spot Instances, 8th Workshop on Many-Task Computing on Clouds, Grids, and
Supercomputers (MTAGS) 2015, Nov 2015, Austin, Texas, USA

[28] Timm, S. (2015, Oct. 21) Fermilab HEPCloud Facility: Data-Intensive Computing in the Cloud keynote talk at
OpenNebulaConf 2015, Barcelona, Spain. http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=5640

[29] S. Timm, G. Garzoglio, S. Fuess, G. Cooper, Virtual Facility at Fermilab: Infrastructure and Services Expand
to Public Clouds, proceedings of the International Symposium on Grids and Clouds (ISGC2015), Mar 2015,
Taipei, Taiwan

[30] G. Garzoglio, O. Gutsche, Diversity in Computing Technologies and Strategies for Dynamic Resource
Allocation, proceedings of Computing in High-Energy Physics 2015 (CHEP15), Apr 2015, Okinawa, Japan,
invited plenary talk.

[31] D. Grassano, S. Timm, G. Garzoglio, A. Tiradani, I. Raicu, R. Krishnamurthy, S. Vinayagam, S. Noh, Code
and Data Movement Design and Benchmarking for the Fermilab HEPCloud Facility, submitted to 30th IEEE
International Parallel and Distributed Processing Symposium (IPDPS), May 23-27, 2016, Chicago, Illinois,
USA

Experimental Study of Bidding Strategies for Scientific

Workflows using AWS Spot Instances

Hao Wu,
Shangping Ren

⇤

Illinois Institute of Technology
10 w 31 St.

Chicago, IL, 60616
hwu28,ren@iit.edu

Steven Timm,
Gabriele Garzoglio

†

Fermi National Accelerator
Laboratory

Batavia, IL, USA
timm,garzogli@fnal.gov

Seo-Young Noh
‡

National Institute of
Supercomputing and

Networking,
Korea Institute of Science and

Technology Information
Daejeon, Korea

rsyoung@kisti.re.kr

ABSTRACT
Spot instance is an auction based Amazon Elastic Compute
Cloud (EC2) instance provided by Amazon Web Service
(AWS). It aims to help users to reduce their resource rent-
ing cost. The price for spot instances sometimes can be as
low as one tenth of the price of the same type on demand
instances. However, while gaining significantly cost savings
on renting resources, users take risks on running instances
without any availability guarantees, i.e. running spot in-
stances can be preempted by Amazon at anytime. Spot
instances that get pre-empted are not charged for their last
hour and some users utilize that feature to run very short
jobs. Di↵erent bidding strategies have been proposed to en-
sure the execution performance of tasks submitted to spot
instances. In this paper, we present a full EC2 spot instance
simulator that uses real EC2 spot pricing history to emulate
the spot instance life cycle and expected charges. We re-
view eight of the most popular bidding strategies in both
literature and practice and compare them in terms of cost,
deadline miss rate and task’s execution length for scientific
workflows. Our evaluation provides users a guidance on how
di↵erent bidding strategies may impact the execution of sci-
entific workflows.

1. INTRODUCTION
AmazonWeb Service (AWS), an infrastructure-as-a-service

(IaaS) cloud provided by Amazon is one of the largest public

⇤The research is supported in part by NSF under grant num-
ber CAREER 0746643 and CNS 1018731.
†This work is supported by the US Department of Energy
under contract number DE-AC02-07CH11359
‡This work is supported by KISTI under a joint Cooperative
Research and Development Agreement CRADA-FRA 2015-
0001 / KISTI-C15005.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

cloud service providers. The increasing popularity of utiliz-
ing cloud computing services is driven by two fundamen-
tal merits provided by cloud services: elastic and economic.
With the elastic IaaS services, users can acquire both com-
puting and storage resources as needed and only need to pay
for the resources when they use the resources. Hence, with
cloud services, users not only save monetary cost but also
save the time and e↵orts on building computing infrastruc-
tures.

Because of these advantages, increased number of com-
panies and organizations have started migrating their exist-
ing compute infrastructures to computer clouds. Accord-
ing to Google, 95% of web services are now deployed on
cloud [5]. It is estimated that the cloud service market will
grow to $270B by 2020 worldwide [6]. The cloud advan-
tages also attract researchers to utilize cloud for scientific
computing. For instance, large research institutes such as
Fermi National Accelerator Laboratory(Fermilab) [14], Ar-
gonne National Laboratory (ANL) [9], Brookhaven National
Laboratory (BNL) [4], CERN [7] and others have begun ex-
ecuting scientific workflows on computer clouds.

However, there are still challenges yet to be solved for
deploying scientific workflows on computer clouds. Scientific
workflows are distinguished from general purpose workflows
by the large amount of computing resources and execution
time that it takes to complete the scientific workflow, in
addition to the large amounts of data that are processed
by the scientific workflow. Hence, although cloud is cost-
e↵ective in general, it can be costly for large size scientific
workflows.

In later 2009, Amazon provided an auction based instance
type – spot instance which allowed users to bid unused EC2
resources. Spot instances can be available at a cost as low as
one tenth of the regular on-demand prices. Sometimes, users
can even get free instances for short jobs. The essence be-
hind such a huge price di↵erence is that the service provider
(Amazon) is willing to fully utilize their resources by selling
spare unused resources in a relatively low price. However,
while gaining significant cost reduction on renting resources,
users also take risks on running instances without guaran-
tees, i.e. spot instances may be preempted during their ex-
ecution by Amazon at any time. Hence, many researchers
have studied the trade-o↵s between cost and spot instance
availability. Di↵erent bidding strategies have been proposed

1
5:
2
5

1
5:
4
5

1
5:
5
0

1
6:
2
5

1
6:
3
0

1
6:
4
0

20

40

60

80
P
ri
ce

(c
en

ts
)

Figure 1: Spot Price Variation for m3.2xlarge Instance
(2015-4-30 15:25 – 2015-4-30 16:40)

to ensure successful execution of submitted tasks and at the
same time minimize of the total execution cost.

However, di↵erent bidding strategies have their own as-
sumptions and use cases. Choosing a bidding strategy with
the most balanced performance for scientific workflows is a
challenging task. In this paper, we first develop a full EC2
spot instance simulator that emulates EC2 spot instance
ecosystem based on real EC2 spot price history, i.e. spot in-
stance’s life cycle and charging behaviors. We review eight
of the most popular bidding strategies in the literature and
from practice. We evaluate their performance in terms of
cost, deadline miss rate and task’s execution length through
large numbers of simulations. Our evaluation conclusions
provide users a guidance on how di↵erent bidding strategies
may impact the execution of scientific workflows.

The rest of paper is organized as follows: Section 2 de-
scribes the EC2 spot instance ecosystem. Di↵erent bidding
strategies are reviewed in Section 3. Detailed design of our
evaluation is presented in Section 4. Section 5 shows the
evaluation results. At last, we conclude our work in Sec-
tion 6

2. AWS SPOT INSTANCE
The AWS Elastic Compute Cloud (EC2) spot instance

allows users to bid their own price to rent the instance. If a
user wins the bid (larger or equal to market price), the user’s
spot instances will be instantiated. If the user loses the bid
(bid price is lower than market price), the user’s running
spot instances are terminated by Amazon automatically.

2.1 Bidding
It is not di�cult to see that the key behind the spot in-

stance is the bidding. As long as the bid is always above mar-
ket price, user’s spot instances will continue running without
interruption. Although a user can bid at an extremely high
price for spot instances to keep the instances running, once
the market price exceeds the on-demand price, renting spot
instance costs more then renting on-demand instances. In
order to prevent unreasonable bid and extremely high cost,
Amazon allows a maximum bid of ten times the on-demand
price for each instance type [1].

There are two types of spot instances a user can bid. One
is called one time spot instance and the other is persistent
instance. For one time instance, the instance will be instan-
tiated once when the bid exceeds the market price and the
instance will be terminated by Amazon when the bid drops
below market price or terminated by the user. Di↵erent
from one time instance, for the persistent bid, spot instances
remains in the system after being terminated by Amazon

and be re-instantiated once the bid surpass the market price
again until they are terminated by users. It is worth noting
that, for both types of spot instances, once a bid is made, it
cannot be changed during the VM instance’s life time.

Amazon also support ”launch group” bid, for which users
can make a single bid for a group of same type spot in-
stances. However, with the group bid, once one member of
the launch group is terminated by Amazon, the entire group
of the instance are terminated. In general case, Amazon only
allows 20 active spot instance bids for each account in each
region. For large amount of spot instance requests, user can
use Spot Fleet [2] to bid spot instances which can get as
much as 1000 spot instance bids per region.

2.2 Market Price
A bid one user made only presents the maximum price

the user is willing to pay rather than the actual price the
user pays for renting spot instances. The actual cost a user
payed for spot instances is determined by market price. The
market price is decided based on the total bids Amazon re-
ceived and the size of the spot pool in a region. Amazon
sorts all received bids in a decreasing order, and use the size
of the spot pool to find the cut-o↵ price. Such cut-o↵ price
is called market price [1]. All the bids above the cut will be
granted spot instances. Once a new bid received, Amazon
re-sorts the bids and then a new market price is determined.

Amazon keeps the records for all the market prices within
the latest ninety days so that users are aware of recent price
changes for spot instances. Such record is called Spot Pric-
ing History, and can be retrieved from both AWS manage-
ment console and APIs. Figure 1 illustrates a spot pricing
history from 2015-04-30 15:25:00 to 2015-04-30 16:40:00 for
m3.2xlarge instances in us-west-2a region. As shown in the
figure, within the 2 hour window, the market price changed
four times.

2.3 Charging
Amazon charges spot instance in integral hours starting

from the time instance that a user’s spot instance is granted.
For each integral hour, Amazon charges market spot price
at the beginning of that integral hour. If the spot instance
is terminated by Amazon, there is no cost for that integral
hour. However, if the spot instance is terminated by user,
Amazon charges the entire integral hour. Take Fig. 1 as an
example. If a user bids one dollar at time 15:25, because
the bid is larger than the market price (53 cents), the spot
instance is granted and will start running. When the market
price drops to 17 cents at 15:45, as the bid is still larger than
the market price, the instance keeps running. As the price
change occurs within one hour after the bid is granted, the
first hour cost is based on the market price at the beginning
of that hour which is 53 cents. When the instance is running
for the second hour, the market price changes to 90 cents at
the beginning of the second hour. Hence, the cost for the
second hour is charged at 90 cents.

2.4 Preemption Notification
Starting from early year 2015, Amazon provides a new ser-

vice to notify users the termination of their spot instances [8].
However, the notification is only available two minutes be-
fore the termination and only can be retrieved from inside
the spot instance. We have not yet implemented a way to
respond to the notification within the 2-minute time win-

dow.

3. BIDDING STRATEGIES OVERVIEW
Based on the spot instance ecosystem, it is not di�cult

for us to find out that di↵erent bidding strategies can result
in di↵erent costs on renting spot instances. For instance, if a
user bids at a low price, it is guaranteed low cost for running
spot instances. However, the availability of the spot instance
is not guaranteed. Many bidding strategies are proposed
in the literature to balance the trade-o↵s between cost and
availability. They can be categorized in two classes: static
bidding and dynamic bidding.

3.1 Static Bidding Strategy
Static bidding strategy is to bid a constant price. It does

not change as the market price changes. The advantage of
static bid is it is simple to implement. The drawback of
the static bid is also obvious: it may not obtain any spot
instance.

One typical example of using static bidding strategy is
ATLAS team in BNL which always bid with one quarter of
the on-demand price [10]. In this paper, we also examine
other static bidding strategies such as bid with on-demand
price, bid with the maximum price in the spot pricing his-
tory, bid with the absolute maximum price (ten times of
on-demand price), bid with the minimum price in the spot
pricing history, bid with 25% more of the minimum price in
the spot pricing history.

3.2 Dynamic Bidding Strategy
Di↵erent from static bidding strategy, dynamic bidding

strategy dynamically adjusts bid prices according to appli-
cation’s execution requirements and market prices.

In 2012, Song et al. proposed an optimal bidding strat-
egy for cloud service broker [12]. They first deconstruct the
spot pricing history data and model the market prices us-
ing semi-Markovian chain, and formulate the problem as a
cloud service broker profit maximization problem. To solve
the problem, they design a profit aware dynamic bidding
algorithm to calculate the optimal bid that maximizes the
profit for cloud service brokers.

Song et al. also proposed an optimal bidding strategy for
deadline constrained jobs [15]. The optimal bidding strat-
egy calculates the bid according to the probability distri-
bution of all the market prices existed in the spot pricing
history and the remaining deadline at the beginning of each
instance hour. In their paper, the authors assume that mar-
ket prices are uniformly distributed. In order to meet appli-
cation’s deadline, once the remaining execution time equals
to the deadline, the application is immediately migrated to
on-demand instance.

Tang et al. also proposed an optimal bidding strategy for
deadline constrained jobs [13]. The authors first theoreti-
cally proved that the optimal bidding strategy can be cov-
ered by a dual-option strategy: either bid with the maximum
price or with zero. Then authors build a Price Transition
Probability Matrix (PTPM) that records the probability of
price changes from one to another in the spot pricing his-
tory. Based on the PTPM, they formulate the problem of
minimizing the cost under required reliability level as a Con-
strained Markov Decision Process (CMDP). An optimal bid
that minimizes the cost is obtained by solving the problem
through linear programming, .

Recently, Bogumil et al. proposed an adaptive bidding
strategy that minimizes the cost for renting spot instances [11].
They first find the minimal price per ECU across all in-
stance types and availability zones from the spot pricing
history. Their adaptive bidding algorithm is to find the cur-
rent cheapest per ECU instances across all the instance types
and availability zones. If the current lowest price is above a
predefined threshold, the algorithm withdraws the bid. Oth-
erwise, it bids with the lowest price. In addition to find the
lowest bid, the adaptive algorithm also calculate the check-
pointing frequency for the application.

Although some bidding strategies are claimed as optimal
bidding strategies, their conclusions are based on their spe-
cific assumptions and application scenarios. In this paper,
we investigate the applicability of these strategies in scien-
tific workflow settings. In particular, we compare a set of
static and dynamic bidding strategies through simulation us-
ing real Amazon spot pricing history data and real Fermilab
scientific workflow requirements settings. The comparisons
are performed against di↵erent evaluation criteria. The de-
tailed simulation design and evaluation criteria are presented
in next section.

4. AWS SPOT INSTANCE SIMULATOR DE-
SIGN

In order to evaluate the performance of di↵erent bidding
strategies, we implement a EC2 spot instance simulator that
can fully emulate AWS spot instance running status and
charging behavior based on real spot pricing history. The
simulator is able to automatically retrieve spot pricing his-
tory from Amazon and store the data in a local database.
In this manner, we can keep more than 90 days of real spot
pricing data. The simulator supports both one time and
persistent spot instances. The inputs of the simulator are
user’s bid price and bid time. The simulator calculates the
instance start time, running duration and total cost. The
simulator is written in Python.

4.1 Simulation Design
We first give definitions for the terminologies used in the

simulation design.

Job: we model a job as a two-tuple j(e,D) , where e is
the execution time demand and D is the deadline of
the job, respectively. Both execution time demand and
deadline are in instance hours.

Success Bid: if a bid is higher or equal to the market
price, it is a successful bid. Otherwise it is an unsuc-
cessful bid. A successful bid doesn’t guarantee success-
ful execution of a task.

Failed Execution: if with a successful bid, a job cannot
finish its execution (preempted by AWS due to price
change), it is counted towards a failed execution. If
with a successful bid, a job can finish its execution,
but its finish time exceeds deadline, it is also counted
towards a failed execution.

Successful Execution: if with a successful bid, a job fin-
ishes its execution before deadline, it is counted to-
wards a successful execution.

An Execution: an execution E is represented as a 3-tuple
(b, p, d), where b is the bid price, p is market price of
the time the bid is made and d is instance running
duration with the bid. The duration d is in integral
instance hours. If d < e, then E is a failed execution.
If d � e, then E is a successful execution.

Simulation (s): one simulation s is to bid spot instance
to finish a job j within the job’s deadline D. In one
simulation, the simulator always tries to bid for in-
stances after unsuccessful bids or failed executions.
The simulation terminates when a job is successfully
executed or it fails by missing deadline. The bid fre-
quency after unsuccessful bids and failed executions is
one hour.

Failed Execution Set (F (s)): the failed execution set of
one simulation is defined as F (s) = {E1, . . . , En}.

Successful Execution Set (S(s)): the successful execution
set of one simulation is either an empty set or a set only
contains one element(a successful execution).

Deadline Miss(d(s)): if the successful execution set of one
simulation is empty, then we say the job misses its
deadline. Hence, d(s) = 1 if S(s) = ;. Otherwise,
d(s) = 0.

Immediate Start (IS(s)) : if the first bid is a success bid,
IS(s) = 1, otherwise, IS(s) = 0.

Cost (C(s)): the total cost to execute a job includes all
the cost of failed executions and the successful execu-
tion. Hence, the total cost is defined as:

C(s) =

|F (s)|X

i=1

(pi⇥di|bi 2 F (s))+

|S(s)|X

i=1

(pi⇥di|bi 2 S(s))

(1)

4.2 Evaluation Criteria
For one instance type on one U.S. availability zone, we

run the single simulation every one hour based on the spot
pricing history data. To evaluate the performance of di↵er-
ent bidding strategies, we compare statistics of simulation
results from two aspects. One is whether jobs finish execu-
tion within their deadlines. The other is the cost to execute
the jobs. To be more specific, we define Sim = {s1, . . . , sn}
as the set of simulations performed in one availability zone
for a given instance type.
Immediate Start Rate (ISR) measures the possibility that

a spot instance can be granted with the first bid:

ISR =

nP
i=1

IS(si)

n
(2)

Deadline Miss Rate (DMR) measures the possibility that
a job misses its deadline:

DMR =

nP
i=1

d(si)

n
(3)

Average Cost to Demand Rate (ACDR) measures the av-
erage cost on executing a job using spot instance compared

with the cost on executing a job using on-demand instance.
It is defined as follow:

ACDR =

nP
i=1

C(si)

n⇥ e⇥ pd
(4)

where pd is the on-demand price for the given instance type.
Expected Execution Length to complete a job (EEL) es-

timates the average total execution time required to finish a
job. It is defined as follow:

EEL =

nP
i=1

(E(si)⇥ (1� d(si))

nP
i=1

(1� d(si)
⇥ 1

1�D(Sim)
(5)

where E(si) is the execution length of ith simulation.

5. EVALUATION RESULTS
The evaluation results are based on the simulation on al-

most four months real EC2 spot pricing history data from
2015-04-03 to 2015-07-29. We run simulations for all the m3
and c3 instances across all the U.S. regions and availability
zones. We evaluate the performance of bidding strategies on
four di↵erent jobs settings, i.e. j1(5, 168), j2(10, 168), j3(24, 168)
and j4(100, 168). Hence, we total run 324 sets of simulations.
On average, each set of simulations contains more than 2000
distinguished single simulations. We evaluate eight di↵erent
bidding strategies, i.e. bidding the minimum price in the
spot pricing history (MinPrice), bidding 25% more of the
minimum price in the spot pricing history (Min+25), bid-
ding the maximum price in the spot pricing history (Max-
Price), bidding the on-demand price (DemandPrice), bid-
ding the absolute maximum price (Demandx10), bidding
quarter of the on-demand price (Demandx.25), bidding with
adaptive bidding strategy (AdaptiveBid) [11] and bidding
with the optimal bidding strategy (OptimalBid) [15].

Due to the page limit, we only illustrate the evaluation
results for m3.2xlarge instances on us-west-2a availability
zone.

Figure 2 depicts the evaluation results for executing 5-
hour jobs using m3.2xlarge instance on us-west-2a availabil-
ity zone. The figure shows that no job is able to finish its
execution when bidding with the minimum price in the spot
pricing history. However, if we raise the bid to 25% more
of the minimum price, the performance is significantly im-
proved. Almost 75% of the jobs are able to finish before their
deadlines. Bidding with quarter of on-demand price results
in the similar performance as the Min+25 strategy as they
result in almost at the same bidding price. If we raise the
bid to the on-demand price, the job success execution rate
can reach 90%. However, it will cost 9% more on all jobs’
execution and 7% more on all success jobs’ execution.

Since the absolute maximum bidding price is larger or
equal to the maximum price exists in spot pricing history,
both of them guarantee immediate start of spot instances
and all the jobs finish their execution within the deadlines.
However, the average cost for completing all jobs reaches
35% of the on-demand prices which is almost the double of
the cost when bidding with on-demand price.

Surprisingly, the adaptive bidding strategy performs not
as well as we would have expected. Almost half of the jobs
failed execution with adaptive bidding. The reason that

Figure 2: Performance Comparison for 5-Hour Job Figure 3: Performance Comparison for 10-Hour Job

Figure 4: Performance Comparison for 24-Hour Job Figure 5: Performance Comparison for 100-Hour Job

Figure 6: Average EEL for 5-Hour Jobs

adaptive bidding strategy has such a high deadline miss
rate is that the adaptive bidding algorithm withdraws its
bid when the calculated bid exceeds the predefined thresh-
old. Since the adaptive bidding algorithm seeks the cheapest
instance, it withdraws many bids and leads to high deadline
miss rate.

With the optimal bid, all jobs are able to finish within
deadline. However, if we look into the details of optimal
bid, we find that the optimal bid strategy can hardly get
spot instances and all the jobs are actually executed us-
ing on-demand instances. The major reason that optimal
bid cannot obtain any spot instance is that the optimal bid
assumes all prices in the price history are follow uniform
distribution which is apparently not the case in practice.

Fig. 3, Fig. 4 and Fig. 5 show the evaluation results for ex-

Figure 7: Average EEL for 10-Hour Jobs

ecuting 10-hour jobs, 24-hour jobs and 100-hour jobs using
m3.2xlarge instance, respectively. As the execution demand
increases, both deadline miss rate and the average cost for
executing jobs increases. Figure 6, Fig. 7, Fig. 8 and Fig. 9
depict the average expected execution length for 5-hour jobs,
10-hour jobs, 24-hour jobs and 100-hour jobs, respectively.
Since when bidding with minimum price can never get jobs
to finish, we eliminate the minimum bid from the figures.
By reviewing all the evaluation results, we can conclude
that bidding with quarter of on-demand price gives most
balanced performance in terms of cost, deadline miss rate
and expected job execution length for scientific workflows.

The complete evaluation results for all m3 and c3 in-
stances on all U.S. availability zones can be found in our
website [3].

Figure 8: Average EEL for 24-Hour Jobs

Figure 9: Average EEL for 100-Hour Jobs

6. DISCUSSION AND CONCLUSION
In this paper, we study the Amazon EC2 spot instance

ecosystem and experimentally evaluated eight most popular
bidding strategies in the literature. We develop a simula-
tor that can fully emulate the spot instance running status
and charging behavior. We use the simulator to evaluate
the eight di↵erent bidding strategies in terms of job execu-
tion cost, job deadline miss rate and expected job execution
length through large simulation runs. Through the evalua-
tion, we conclude that bidding with 25% of on-demand price
give most balanced performance for scientific workflows.

In addition, we also find that all the dynamic bidding al-
gorithms do not perform as well as we would have expected.
Our study reveals that these dynamic strategies are based on
some assumptions which do not hold in reality. For instance
the assumptions that a bid can be changed after the bid is
made [15]; checkpointing can be perfectly performed before
spot instances get preempted by Amazon [13]; are not valid
in practice.

Another assumption that made by all the literature [15,
13, 11] is that a single bid will not a↵ect the spot pricing.
However, as previously mentioned, scientific workflows re-
quire large amounts of resources which makes the assump-
tion invalid. Large amount of spot instance requests can
have significant impact on the entire spot market. Hence, it
is possible that none of the current bidding strategies works
well for large amount spot instance biddings. One of our

future work is to study the impact of large scale bids and
the performance of di↵erent bidding strategies on large scale
bids. Since we only evaluate performance of bidding strate-
gies on single instance types in single availability zone in our
current work, another future work is to explore the bidding
strategies for finding the cheapest spot instances and that
are least likely to be pre-empted across multiple availability
zones.

7. REFERENCES
[1] AWS EC2 Sport Instance.

http://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/using-spot-instances.html.
[2] AWS EC2 spot fleet. http://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/spot-fleet.html.
[3] CODE. code.cs.iit.edu.
[4] Feature - clouds make way for STAR to shine.

http://www.isgtw.org/feature/

isgtw-feature-clouds-make-way-star-shine.
[5] Google cloud platform roadshow 2014.

https://speakerdeck.com/googlecloudplatform/

keynote-cloud-developer-roadshow-2014.
[6] http://www.marketresearchmedia.com/?p=839.
[7] Mapping the secrets of the universe with google

compute engine.
https://cloud.google.com/developers/articles/

mapping-the-secrets-of-the-universe-with-google-compute-engine?

hl=ja.
[8] New EC2 spot instance termination notices.

https://aws.amazon.com/blogs/aws/

new-ec2-spot-instance-termination-notices/.
[9] Nimbus and cloud computing meet STAR production

demands. http://www.hpcwire.com/hpcwire/
2009-04-02/nimbus_and_cloud_computing_meet_

star_production_demands.html.
[10] M. Ernst, C. Gamboa, J. Hover, H. Ito, and

M. OConnor. Running ATLAS at scale on amazon
spring 2015 HEPiX. 2015.

[11] B. Kamiński and P. Szufel. On optimization of
simulation execution on amazon ec2 spot market.
Simulation Modelling Practice and Theory, 2015.

[12] Y. Song, M. Zafer, and K.-W. Lee. Optimal bidding in
spot instance market. In INFOCOM, 2012 Proceedings
IEEE, pages 190–198. IEEE, 2012.

[13] S. Tang, J. Yuan, and X.-Y. Li. Towards optimal
bidding strategy for amazon EC2 cloud spot instance.
In Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pages 91–98. IEEE, 2012.

[14] S. Timm, G. Garzoglio, S. Fuess, and G. Cooper.
Virtual facility at fermilab: Infrastructure and services
expand to public clouds. In The International
Symposium on Grids and Clouds (ISGC), volume
2015, 2015.

[15] M. Zafer, Y. Song, and K.-W. Lee. Optimal bids for
spot vms in a cloud for deadline constrained jobs. In
Cloud Computing (CLOUD), 2012 IEEE 5th

International Conference on, pages 75–82. IEEE, 2012.

Code and Data Movement Design and Benchmarking for the Fermilab HEPCloud
Facility

Steven C. Timm, Gabriele Garzoglio, Anthony
Tiradani, Davide Grassano

Scientific Computing Division, Fermilab
Batavia, IL, USA

{timm,garzogli,tiradani}@fnal.gov

Rahul Krishnamurthy, Shivakumar Vinayagam, Ioan
Raicu

Computer Science Dept.,
Illinois Institute of Technology

Chicago, IL
Rahul013@gmail.com,s.vinayagam15@gmail.c

om,iraicu@iit.edu

Seo-Young Noh
National Institute of Superconducting and Networking
Korea Institute of Science and Technology Information

Daejeon, Korea
rsyoung@kisti.re.kr

Abstract – The nature of data that is generated by scientific
experiments and the computing power required by them are
often unpredictable. In order to fulfill the needs of
experimenters, Fermilab has initiated a project to build the
Fermilab HEPCloud Facility. This facility will enable
experiments to perform the full spectrum of computing tasks,
including data-intensive simulation and reconstruction,
irrespective of whether the resources are local, remote, or both.
It will also allow Fermilab to provision resources in a more
cost-effective way, using the public cloud to provide elasticity
that will allow the facility to respond to demand peaks without
overprovisioning local resources. This paper describes the
significant amount of preparatory work that has been done to
plan and prepare the code and data movement mechanisms for
the HEPCloud Facility. We have deployed a scalable caching
service to deliver code and database information to jobs
running on the public cloud. This uses the frontier-squid
server and CVMFS clients on EC2 instances and utilizes
various services provided by AWS to build the infrastructure
(stack) and perform load testing on the squid servers. We have
also done extensive performance benchmarking on AWS EC2
compute instances, the Amazon S3 Simple Storage Service, and
the network bandwidth between Amazon and the storage
elements at Fermilab to which we stage back our data. Based
on the performance and cost of these services we have
developed a code and data movement strategy for our
experimental users.

Scalable Infrastructure, Benchmarking, Code Distribution,
Public Cloud Computing

I. INTRODUCTION TO THE HEPCLOUD PROJECT
The Fermilab HEPCloud Facility will enable high-energy

physics experiments to perform the full spectrum of
computing tasks, including data intensive computing and
reconstruction, using the commercial cloud as an extension
of the Fermilab facility. The goal of the first year of the
project is to make a facility that successfully demonstrates
data-intensive computing for three key use cases. The use
case for the Compact Muon Solenoid experiment at CERN
(CMS) is expected to generate 800TB of output over the
course of a month of running 56000 compute cores on
Amazon Web Services (AWS). The use case of the NOvA
experiment at Fermilab anticipates 2-3 TB both of input and
output in an estimated 2 million hours of computing. The
third use case is a collaboration between the Dark Energy
Survey telescopic survey and the LIGO gravitational wave
experiment in which the amount of computing is modest but
must be done on very fast turnaround. In addition to the
significant transfer of inbound and outbound data that is
being processed in these high-throughput computing tasks,
both applications also need to contact remote databases
across the wide-area network. All of them also have very
large code bases that need to be transferred to the remote
cloud.

The goal of the preparatory work that has been done in
this phase of the HEPCloud project is first of all to scale-test
the auxiliary caching services that are used for code
movement and database query caching, to be sure they can
handle the expected load. We also have carefully
benchmarked the compute speed, the available network

transfer bandwidth, and the throughput to the cloud-based
storage system. This work is necessary so we can accurately
plan the budget for these projects and estimate their total
duration.

In the remainder of the paper we will describe the
architecture of the scalable service, the methodology used to
stress-test them, and the benchmark results. We will then
describe the benchmarking work that was done on the
Amazon Web Service compute instances, network
bandwidth and S3 storage service components.

II. SCALABLE SERVICES DESCRIPTION
Amazon Elastic Compute Cloud (AmazonEC2) is a web

service that provides resizable computing capacity in the
cloud. It is designed to make web-scale cloud computing
easier for developers. Amazon EC2’s simple web service
interface allows you to obtain and configure capacity with
minimal friction. It provides you with complete control of
your computing resources and lets you run on Amazon’s
proven computing environment. Amazon EC2 reduces the
time required to obtain and boot new server instances to
minutes, allowing you to quickly scale capacity, both up and
down, as your computing requirements change. Amazon
EC2 changes the economics of computing by allowing you
to pay as you use.

All of the services below are provided by Amazon except
the CVMFS service and the Frontier-Squid service.

A. Elastic Load Balancer
Elastic Load Balancing automatically distributes incoming
application traffic across multiple Amazon EC2 instances
in the cloud. It enables you to achieve greater levels of fault
tolerance in your applications, seamlessly providing the
required amount of load balancing capacity needed to
distribute application traffic.

B. Auto-scaling Groups
Auto Scaling helps you maintain application availability and
allows you to scale your Amazon EC2 capacity up or down
automatically according to conditions you define. You can
use Auto Scaling to help ensure that you are running your
desired number of Amazon EC2 instances. Auto Scaling can
also automatically increase the number of Amazon EC2
instances during demand spikes to maintain performance
and decrease capacity during lulls to reduce costs.

C. Route 53
Amazon Route 53 is a highly available and scalable cloud
Domain Name System (DNS) web service. It is designed to
give developers and businesses an extremely reliable and
cost effective way to route end users to Internet applications
by connecting user requests to infrastructure running in
AWS – such as Amazon EC2 instances, Elastic Load

Balancing load balancers, or Amazon S3 buckets – and can
also be used to route users to infrastructure outside of AWS.

D. CloudWatch
Amazon CloudWatch is a monitoring service for AWS
cloud resources and the applications you run on AWS. You
can use Amazon CloudWatch to collect and track metrics,
collect and monitor log files, and set alarms. You can use
Amazon Cloud-Watch to gain system-wide visibility into
resource utilization, application performance, and
operational health.

E. CloudFormation
AWS Cloud-Formation gives developers and systems
administrators an easy way to create and manage a
collection of related AWS resources, provisioning and
updating them in an orderly and predictable fashion. We can
deploy and update a template and its associated collection of
resources (called a stack) in JSON or text format. It is used
to setup the entire infrastructure and manage it in the same
console.

F. CERN Virtual Machine File System (CVMFS)
The CernVM File System (CernVM-FS) provides a
scalable, reliable and low maintenance software distribution
service. It was developed to assist High Energy Physics
(HEP) collaborations to deploy software on the worldwide-
distributed computing infrastructure used to run data
processing applications. CernVM-FS is implemented as a
POSIX read-only file system in user space (a FUSE
module). Files and directories are hosted on standard web
servers and mounted in the universal namespace /cvmfs.
Internally, it uses content-addressable storage and Merkle
trees in order to maintain file data and meta-data. CernVM-
FS uses outgoing HTTP connections only, thereby it avoids
most of the firewall issues of other network file systems. It
is actively used by small and large HEP collaborations. This
is installed in the clients during boot time.

G. Frontier-Squid
The Frontier distributed database caching system distributes
data from data sources to many clients around the world.
The name comes from "N Tier" where N is any number and
Tiers are layers of locations of distribution. The protocol is
http-based and uses a RESTful architecture which is
excellent for caching and scales well. The Frontier system
uses the standard web caching tool squid to cache the http
objects at every site. It is ideal for applications where there
are large numbers of widely distributed clients that read
basically the

Figure 1: CVMFS Client/Server Architecture on AWS

same data at close to the same time, in much the same way
that popular websites are read by many clients.
The frontier-squid software package is a patched version of
the standard squid http proxy cache software, pre-
configured for use by the Frontier distributed database
caching system.

III. ARCHITECTURE OF SCALABLE STACK
The entire infrastructure setup of the project is done by
cloud formation with the AMI’s that are created. All the
services that were explained work together in unison to
complete the jobs given by the client/worker nodes. The
architecture of the setup is given in Figure 1.

As shown in the figure the clients directly contact the URL
which points to the load balancer which in turn points to the
squid. The initial state of the system has only a single squid
server which does most of the heavy lifting and it scales up
when the network out bandwidth of the squid is more than a
threshold that we set for a particular amount of time,
similarly when they are idle for some time they are
automatically scale down. This operation is taken care by
the Autoscaling group. CloudWatch monitors all the metrics
of the squid server and triggers an alarm which starts up a
new instance which is a squid server. The setup will be
organized in such a way that each availability zone has a
similar stack and performs the same functions.

IV. IMPLEMENTATION AND MEASUREMENT

A. Requirements and Installation Procedure

We use a virtual machine with Scientific Linux 6 to
install the frontier-squid server. We allow 20GB for disk
caching space. Squid servers are limited by network
bandwidth so for these tests we compared two Amazon
instance types m3.xlarge which has 4 CPU cores and an
average network bandwidth of 1Gbit/sec, and m3.large
which has 2 CPU cores and average network bandwidth of
700Mbit/sec. We also create client machines by installing
the CVMFS client RPM as documented in the references.
For these tests the clients were of instance type m3.medium.
On the client machine there is a script that runs at boot time
and sets the address for the squid stack based on which
availability zone you are in. For example in us-west-2a
availability zone the client would be automatically
configured to be elb2.us-west-2a.elb.fnaldata.org, where
fnaldata.org is an internal alias domain that is visible only to
our virtual machines in Amazon Web Services. In
production we will launch one of these service stacks in each
availability zone in which we run.

We simulated the load through two different scripts. One

called largequery made repeated requests (2500 in parallel)
for the same 10MB file, for a total of 2.5TB of total
throughput per client. Smallquery fetched a very small file a
very large number of times (312500) and was designed to
test the total number of requests that the load balancer can
serve.

B. Results of load tests.

Figure 2 shows the network throughput of the three

frontier-squid servers that were activated in the course of the
largequery test. The three squid servers turn on one at a time
as the high load continues. The full throughput of the
system, including the clients, load balancers, and servers, is
limited only by the maximum network throughput that the
clients and servers can generate. The Elastic Load Balancer
is found to not be a network traffic bottleneck. This is
important because all network traffic to and from the squid
servers does go through the load balancer.

Figure 3 shows the number of the requests per minute

that were coming into the load balancer due to the
smallquery script. It shows that the load balancer can easily
handle up to 500,000 requests per minute without having any
dropped requests. We observe that during periods of high
load the elastic load balancer DNS entry starts to contain
more IP addresses in the list of IP addresses that it returns.

We have successfully demonstrated a sustained network

bandwidth that is greater than the anticipated bandwidth that
will be required for database caching and code caching in our
largest use case. We have demonstrated that the load
balancing structure does not adversely affect network
bandwidth, and that it results in no dropped requests.

Figure 2: Network throughput of Squid server

Figure 3: Load Balancer Requests per Minute

V. BENCHMARKING DESCRIPTION

A. Motivation for Benchmarking
When purchasing your own hardware, you would use
generic and portable benchmarks, as to define the
performance of the hardware at running a wide variety of
tasks. When buying on-demand hardware from a third-party
provider, specific benchmarks are required since the
machines are bought only for the duration of a particular
job, and should be the best at executing it. The study here
presented regards the benchmarking of AWS instances and
local cloud resources, with the purpose of using them for a
full scale CMS (Compact Muon Solenoid) job. The
benchmarks used were the ttbar_gensim, which constitute a
reduced version of the first phase of the job, the hepspec06,

a smaller collection of packages from the more notorious
SPEC2006, and some custom made bandwidth benchmarks.

B. GENSIM Benchmarks
The gensim benchmark is a reduced version of what the first
phase of a CMS job will be. It acts by simulating the
generation of 150 ttbar events and storing their data by
using up to 100GB.
Because of its nature, this benchmark is not only one of the
most suited to assess the performances of the machine, but it
also allow to monitor if the first phase of a CMS job will
run smoothly without failing.
The results are given as total ttbar/s and ttbar/s per core, and
can also be used to estimate the running time of a CMS job.
By running the benchmark multiple times on the same
machines, it was determined that the results were very
consistent, with maximum standard deviation obtained of
2%.

C. HEPSPEC06 Benchmarks
The hepspec06 is a subset of the SPEC benchmarks
collection defined by the all_cpp command. The reason for
choosing this benchmark lays in the fact, that the
components stressed by it are the same required for a CMS
job, whose code is written in C++.
Its purpose is to stress the CPU and compiler of the system,
for both integer and floating point calculations and, with this
being a generic benchmark, the obtained results will be
more relatable, allowing for a comparison of performances
with a much wider set of machines.
The results are given by the HS06 value, which is obtained
by calculating the geometric mean of the inverted ratios
between the running time for each benchmark in the
package and the respective associated constant. Before
calculating the geometric mean, the ratios are actually
averaged over 3 runs of the benchmarks, in order to obtain a
statistic.

D. Bandwidth tests

The bandwidth tests have been carried out through the usage
of custom made scripts that employ the same transfer
protocols and storage systems that will be adopted during
the execution of a CMS job.
Amazon S3 storage is one of the possible solutions for
storing intermediary files that needs to be written by the first
phase of the job and read by the second phase. In order to
test it, the high level ‘aws s3 cp’ command from the AWS
CLI was used to simultaneously transfer 1, 10 and 100 1GB
files, from up to 25 VMs at the same time. By doing this
test we hoped to determine whether we would see any
outright failures of fetches from S3.
In order to store the final results of the CMS job, FermiGrid
storages have been considered. The globus-url-copy and
xrdcp commands were adopted respectively to transfer to 2
different servers. Due to the high latency from Amazon to
Fermilab, the file transfers had to be carried out by using

multiple parallel streams, the best number of which was
determined through a study of the parallelism parameter
used by both commands. The globus-url-copy also allows to
set the number of simultaneous TCP connection to use at the
same time. With the aim of simulating the data transfer of a
CMS job, 1, 5, 10 and 20 1GB files were transfer
simultaneously to the storage, from up to 25 VMs at the
same time.

Figure 4: Download bandwidth throughput test from Amazon
S3 to c3.2xlarge instances

Figure 5: Study of the effect of the parallelism parameter
over the total throughput

Figure 6: Study of the effect of the concurrency parameter
over the total throughput

Figure 7: Total throughput analysis of the globus-url-copy
command toward the fndca1 server

Figure 8: Total throughput analysis of the xrdcp
command toward the cmseos server

Amazon N_C OR E C OR E -TYP E S peed(GHz) $-per-hour ttbar/s -per-core ttbar/s -total ttbar-per-$/hHS 06-per-coreHS 06-total HS 06-per-$/h
m3.xlarge 4 Xeon-E 5L2670 2.50 0.266 0.0139 0.0557 0.209 14.3 57.1 215
m3.2xlage 8 Xeon-E 5L2670 2.50 0.532 0.0139 0.111 0.208 12.2 97.6 184
m4.xlarge 4 Xeon-E 5L2676 2.40 0.252 0.0201 0.0806 0.320 16.1 64.5 256
m4.2xlage 8 Xeon-E 5L2676 2.40 0.504 0.0191 0.153 0.304 15.1 121 240
m4.4xlarge 16 Xeon-E 5L2676 2.40 1.008 0.0198 0.317 0.315 13.5 217 215
c3.xlarge 4 Xeon-E 5L2680 2.80 0.210 0.0153 0.0611 0.291 14.9 59.4 283
c3.2xlage 8 Xeon-E 5L2680 2.80 0.420 0.0153 0.122 0.291 14.7 118 281
c3.4xlarge 16 Xeon-E 5L2680 2.80 0.840 0.0149 0.239 0.284 13.2 212 252
c4.xlarge 4 Xeon-E 5L2666 2.90 0.220 0.0228 0.091 0.415 17.5 69.9 318
c4.2xlage 8 Xeon-E 5L2666 2.90 0.441 0.0226 0.181 0.410 16.5 132 300
c4.4xlarge 16 Xeon-E 5L2666 2.90 0.882 0.0205 0.327 0.371 14.8 237 268
r3.xlarge 4 Xeon-E 5L2670 2.50 0.350 0.0151 0.060 0.172 15.5 62 177
r3.2xlarge 8 Xeon-E 5L2670 2.50 0.700 0.0150 0.120 0.171 14.2 114 162
r3.4xlarge 16 Xeon-E 5L2670 2.50 1.400 0.0146 0.233 0.166 12.7 203 145
cc2.8xlarge 32 Xeon-E 5L2670 2.60 1.090 0.0141 0.450 0.413 11.2 359 329

Table&1:!Final!results!from!the!gensim!and!hepspec06!benchmarks!on!AWS!instances!

Table&2:!Final!results!from!the!gensim!and!hepspec06!benchmarks!on!Fermilab!machines!

VI. RESULTS OF BENCHMARKING

A. TTBar and GENSim
The results for the GENSIM and HEPSPEC06 benchmarks
are reported in Table 1 and Table 2. The cost model
adopted in this analysis is based on the on-demand pricing
of AWS instances, which is indicative of the ‘0.25 of the
on-demand’ algorithm that is being considered for the spot
market.

From the cost effectiveness alone, the best machines that
have been observed would be those from the c4 and cc2
series, but this would be without taking into account that the
c4s are EBS only, which means that the price of the storage

is not included in the one here presented. For this reason, the
c3 instances have been considered, with particular regards
for the c3.2xlarge, which comes with enough disk space,
RAM and bandwidth to run a CMS job in a cost effective
manner.
In order to compare local machines with the AWS ones, the
same benchmarks have been run over the FermiCloud, for
both VM and bare metal, obtaining the results presented in
Table 2, that, when compared with those in Table 1 show
that the performances of local and public cloud machines
analyzed are similar.

B. Bandwidth Test to S3

With this in mind, the study moved to the analysis of the
bandwidth throughput from amazon c3.2xlarge instances to
Amazon S3 and FermiGrid storage systems.

The results of the bandwidth analysis for reading from S3
are reported in Figure 4, from which it was concluded that
no matter how much we would stress Amazon S3 within the
capabilities of our AWS account, we would always get all
the requested bandwidth, with the only limit being the
maximum of 1Gbit/s per c3.2xlarge instance. We observed
no error failures.

C. Parallelism and Concurrency Analysis

Before moving to the analysis of the bandwidth to

FermiGrid and CMSEOS, an analysis of the effect of the
parallelism and concurrency parameters was carried out, in
order to obtain the maximum efficacy for the minimum
required number of inbound connections.

From the analysis of the data reported in Figures 5 and 6,

it was concluded that the best solution was to set parallelism
at 4 and concurrency a 5. Any values higher than this, would
cause some of the uploads request to time out during the
bulkier phase of the benchmarks, for what it is thought to be
a problem of the dCache on the receiving server not being
able to distribute all the required inbound connections.

D. Bandwidth Test to FermiGrid and CMSEOS

Using the globus-url-copy command toward the fndca1
server (the general disk server for FermiGrid) , and the
xrdcp command toward the cmseos server (the dedicated
disk storage server for CMS Tier 1), the upload bandwidth
throughput from c3.2xlarge instances was analyzed.

The results reported in Figures 7 and 8 show that we were
able to reach a maximum bandwidth of 5.6Gbit/s with the
globus-url-copy and 7Gbit/s with the xrdcp to cmseos. Both
of these are large storage services with multiple machines to
receive the data on our end. CMSEOS has more receivers
than does fndca1 so we would expect that it has slightly
better throughput.

E. Summary of Results

Through this process of CPU benchmarking, we have
identified several types of Amazon instance types that will
be suitable for our experimental use cases. Although the
final software suite for the large production is still being
finalized, we expect that the relative performance numbers
between various AWS instance types and bare metal
machines at Fermilab will be true to the ratios we have
measured, and the relative performance numbers will be key
to determining the final mix of instance types that we run.

We have also demonstrated a total network throughput from
Amazon virtual machines to the Fermilab storage systems,
2.5 times larger than the expected rate of data that will be
generated by the jobs in the CMS use case. Given the actual
network connectivity between Fermilab and Amazon via the
ESNet research network (100Gbit/s to some regions) we
expect that eventually we can do even better and believe
that we may currently be limited by the number of
simultaneous files our server can receive at once. The
combination of sufficient caching service, network
throughput, storage bandwidth, and compute instances show
that we are ready to analyze data in bulk on the cloud.

ACKNOWLEDGMENT
This research is supported by the US Department of

Energy under contract number DE-AC02-07CH11359.
This work is supported by KISTI under a joint

Cooperative Research and Development Agreement
CRADA-FRA 2015-001 / KISTI-C15005.

We acknowledge the support of the Amazon Web
Services team.

REFERENCES

[1] S. Timm, G. Garzoglio, S. Fuess, and G. Cooper. Virtual facility at

fermilab: Infrastructure and services expand to public clouds. In The
International Symposium on Grids and Clouds (ISGC), volume 2015,
2015.

[2] Squid - HTTP proxy server http://www.squid-cache.org, 2015
[3] J. Blomer et al, Status and future perspectives of CernVM-FS J.

Phys.: Conf. Ser. 396052013, doi:10.1088/1742-6596/396/5/052013
[4] H. Wu, S. Ren, S. Timm, G. Garzoglio, S. Noh, “Experimental Study

of Bidding Strategies For Scientific Workflows using Spot
Instances.” Submitted to MTAGS workshop Nov. 2015.

[5] S. Timm et al, Cloud Services for the Fermilab Scientific
Stakeholders. CHEP workshop 2015 to be published in IOP
Conference Proceedings.

Diversity in Computing Technologies and Strategies

for Dynamic Resource Allocation

G. Garzoglio1, O. Gutsche1
1
Fermi National Accelerator Laboratory, Batavia, IL, USA

E-mail: garzogli@fnal.gov

E-mail: gutsche@fnal.gov

Abstract. High Energy Physics (HEP) is a very data intensive and trivially parallelizable

science discipline. HEP is probing nature at increasingly finer details requiring ever increasing

computational resources to process and analyze experimental data. In this paper, we discuss how

HEP provisioned resources so far using Grid technologies, how HEP is starting to include new

resource providers like commercial Clouds and HPC installations, and how HEP is transparently

provisioning resources at these diverse providers.

1. Introduction
High Energy Physics (HEP) strives to develop a detailed mathematical understanding of nature
at the smallest elementary level. Its science is based on the interplay between the theory
framework that describes elementary particles and elementary forces between them; and the
experimental detection of particles and measurements of their interactions. It calls for probing
nature at ever increasing detail to unlock the last mysteries of our universe. Also called
elementary particle physics, its experimental results are based on the analysis of many individual
detector measurements in comparison to corresponding simulations that are based on the current
understanding of the theory. Because of this, HEP was and is traditionally a very data intensive
and trivially parallelizable science discipline.

We expect that the future will see increases in number and complexity of recorded particle
interactions and corresponding simulations. Using the example of the LHC [1], the second
data taking period will increase the center-of-mass energy and instantaneous luminosity
significantly [2]. In addition, the LHC experiments will collect a higher rate of particle
interactions to maximize their physics reach [3, 4]. This translates into increasing CPU
resource demands that are needed to perform the simulation and reconstruction of these particle
interactions. The future is expected to bring even more increases, we will have to answer the
question of how we can provide access to su�cient CPU capacity to be successful in our physics
research. We call this the capacity question.

Experience from the LHC also showed that these CPU resource demands are not constant
over time. They vary significantly with external triggers like for example the operation schedule
of the collider, the conference schedule and vacation schedule.

As an example, Fig. 1 shows the variation of number of active analysis users of CMS over
time; and the re-reconstruction passes performed in 2011 leading up to the announcement of

Figure 1. (left:) Number of CMS analysis users over time showing the variation of analysis
activity, (right:) CMS re-reconstruction passes of data in 2011 leading up to announcement of
hints for a ⇠125 GeV boson at the December 2011 CERN seminar.

first hints for a ⇠125 GeV boson, leading to the announcement of the Higgs Boson discovery in
2012 [5]. A computing model that adapts closely to these varying demand is generally called
“elastic”. In the future, we will have to answer the question of how to introduce more elasticity
into the resource allocation. We call this the elasticity question.

In this paper, we want to discuss our view on solutions for the capacity and elasticity question.
We want to look at the way HEP is currently provisioning CPU resources using the Grid and
look at the new technologies and providers in the form of Clouds and HPC machines.

2. The HEP processing challenge
In general, the HEP processing challenge is trivially parallelizable. The simulation and/or
reconstruction of individual particle interactions can be treated separately. The processing of
one interaction does not need input from the processing of another interaction. It is one of
the best examples of the High Throughput Computing (HTC) paradigm “that focuses on the
e�cient execution of a large number of loosely-coupled tasks” [6].

A single batch system with access to worker nodes to execute HEP applications was su�cient
in the past to realize the HTC paradigm. In most cases, these were installations hosted by
universities or research institutes that handled access and support locally. With increasing
demand of the community, the need to access more and more resources that are also distributed
across locations and administrative boundaries arose. The Grid provided the necessary tools and
services to enable easy access to a diverse group of researchers to distributed resources. Di↵erent
groups of researchers are organized in virtual organizations (VOs). Computing installations
at universities or research institutes joined the Grid by allowing all users of a VO to execute
applications on their local resources, therefore building a trust federation of computing resources.
These Grid sites defined the list of VOs that were allowed access to their local resources. Sites are
pledging amounts of their resources for individual VOs, therefore formalizing resource sharing
at individual sites. Pledged resources not used by a VO can be used by other VOs and are called
opportunistic resources.

The Grid was and is very successful and for example enabled the LHC experiments to fulfill
all computing demands for the first LHC run. It is based on batch systems which utilize directly
worker nodes installed with a specific OS. Industry went a di↵erent way and used virtualization
to establish a new resource sharing model: the Cloud. The Cloud replaces the batch system
with a system that manages virtual machines on the physical hardware of the site and is run as
a business. Commercial Clouds follow a pay-as-you-go model, where all resources are strongly

accounted and a customer pays for what was used. These business models promise near-infinity
capacity and elasticity, which allows customers to use significant amounts of resources with very
short ramp-up time as well as releasing them again when they are not needed anymore. In
the Grid model, VOs plan their resource requests to get their work done in a defined period of
time. The resource requests by VOs and the subsequent pledges by Grid sites are provisioned
for peak to fulfill the VOs requirements. As shown before, the VOs demands are rarely constant
over time and there are periods of lower computational demand by a VO. These free resources
can be used opportunistically by other VOs following the sharing principle of the Grid. VOs
that benefit from opportunistic resources themselves provide access to their unused resources
at other times to the benefit of everyone. If cost e↵ective, elasticity promised by Clouds could
help in provisioning less resources permanently through the Grid and in times of demand allow
for su�cient resource availability. Some commercial Cloud providers have developed in addition
a spot price market, where excess unused capacity in the commercial Clouds can be given to
customers at much lower prices through a bidding process. This is the Cloud equivalent to
opportunistic usage of Grid sites.

A third new resource provider opening up for HEP applications are HPC installations. HPC
stands for High Performance Computing and focusses on the “e�cient execution of compute
intensive, tightly-coupled tasks” [6]. They can, however, under certain circumstances execute
HEP applications that follow the HTC paradigm. In recent time, the usage of HPC installations
has become more and more accessible and feasible. HPC installations allocate resources to their
users di↵erently than traditional Grid and Cloud resources. Individual researchers or small
groups of researchers are granted access to HPC installations through an allocation process. A
peer review committee considers proposals designed more for individual researchers than large
collaborations. In the end, allocations in time and capacity on HPC installations are awarded
to successful proposals.

Table 1 shows an overview of the three resource provider types that we think will be most
relevant in the near-term future to provide su�cient resource capacity and elasticity in our field.

Grid Cloud HPC
Trust Federation Economic Model Grant Allocation

• Virtual Organizations
(VOs) of users trusted
by Grid sites

• VOs get allocations !
Pledges

– Unused alloca-
tions: opportunistic
resources

• Commercial Clouds -
Pay-as-you-go model

– Strongly accounted
– Near-infinite capac-

ity ! Elasticity
– Spot price market

• Researchers granted ac-
cess to HPC installations

• Peer review committees
award Allocations

– Awards model de-
signed for individ-
ual PIs rather than
large collaborations

Table 1. Comparison of the Grid, Cloud and HPC resource provider types.

In the following, we would like to discuss the three resource provider types with emphasis on
how we can use them with our HEP applications and how they can be transparently integrated
into the current Grid-based setups. As the allocation models of the three provider types are
rather di↵erent, we discuss how they can be integrated to support HEP needs.

3. The Grid Allocation Model
The Grid is based on a trust federation of resources (see Section 2). It allows transparent access
to a large amount of resources for large groups of researchers. Researchers are typically organized
in collaborations with many thousand members. The Grid is considered very successful. The
prime example being the Worldwide LHC Computing Grid (WLCG) [7], which allowed the
LHC experiments to rely on Grid-connected distributed resources from the beginning of their
operation.

The Grid infrastructure is based on batch systems on large farms of computers called “worker
nodes” that are reachable through Grid interfaces and services. For executing HEP applications,
a task is typically split into smaller parts, or jobs, that can be executed in parallel. The Grid
provides mechanisms to submit these jobs to a large amount of resources at the same time.

In the early days of the Grid, jobs were submitted directly or through a workload management
system to the Grid interfaces of the sites. We call this the push era of the Grid. This evolved into
pilot-based submission infrastructures. They are based on lightweight jobs called pilots to claim
a job slot on a worker node. After initial checks of the worker node environment to verify basic
functionality, the pilot signals the submission infrastructure that it is ready to receive work. It
can then be assigned work in the form of a job from a task queue. We call this the pull era of
the Grid. Most HEP VOs are now using pilot-based submission infrastructures. This approach
allows for very late binding of the processing resource to the job, enabling the system to control
scheduling and prioritization on a global scale. It reduces the failure rate of Grid job submission
dramatically, because the job execution only starts after the resource was successfully claimed
and validated. Pilot-based submission infrastructures allow for easy integration of non-Grid
based resources. On the other hand, the infrastructure has generally more components than a
push-based model and therefore the debugging can be more complex.

A good example of a pilot-based submission infrastructure is glideinWMS [8], which is based
on HTCondor [9]. Fig. 2 shows a schematic view of a glideinWMS submission infrastructure.
It is composed of HTCondor submit nodes implementing a queue of jobs; the VO frontend
that monitors the submit nodes and initiates pilot submissions to the sites via the factory
components; and the central manager that connects pilots that successfully claimed resources
with jobs. HTCondor is used to form an overlay pool of all pilots as if all resources are in the
same batch system, only spanning multiple distributed sites.

Figure 2. Schematic view of a glideinWMS submission infrastructure.

GlideinWMS is widely used and e↵ectively implements the following concepts:

(i) The provisioning system (factories and central manager) can be shared amongst di↵erent
communities and VOs.

(ii) Separate overlay pools of resources can be provisioned per community.

(iii) Each community has full control over their policies and priority settings within their pools.

The flexibility and ease-of-use of pilot-based submission infrastructures is important to enable
the integration of Clouds and HPC installations for HEP.

4. The HPC Allocation Model
HPC installations have a long history in HEP, they are used for more HPC-like applications
such as Lattice QCD [10] and Accelerator Modeling [11]. Recently the interest in the user HEP
communities and of the HPC installations increased to also run traditional HEP framework
applications. If the HPC installation is using an Intel-based architecture, it is possible to execute
HEP applications unmodified. While for non-Intel-based architectures, the cross compilation of
HEP applications using native compilers is necessary. In the following section, we give examples
of each of the Intel-based and non-Intel-based architecture cases.

In the Intel-based architecture case, CMS received an allocation at the San Diego
Supercomputer Center (SDSC) in 2013 to re-process specific proton-proton data [12]. SDSC
operates a number of Intel-based HPC clusters ranging from ⇠10k to ⇠50k cores. Individual
principal investigators (PIs) submit proposals and a committee meets every three months to
award allocations in the form of CPU hours. Successful proposals have one year to use the
awarded allocation. Follow up proposals can be submitted. They need to demonstrate the
scientific impact of the previous research. CMS took part in the allocation award procedure at
SDSC with the goal to reprocess additional proton-proton data a lot faster and earlier after the
LHC run 1 finished. The additional data in question had not been processed during the run
itself due to processing capacity reasons and was used to publish additional physics results not
reachable by the LHC run 1 data. CMS used glideinWMS pilots submitted through ssh login
nodes at SDSC, processed the data, and published more than 11 papers based on the SDSC
allocation. CMS is now working on follow-up proposals. As a direct reaction to the CMS/HEP
use case, SDSC is preparing to give access to its HPC installations through Grid Compute
Elements (CEs), making it even easier to integrate SDSC resources into pilot-based submission
infrastructures.

In the non-Intel-based architecture case, Atlas was able to utilize the PowerPC-based Mira
Supercomputer at Argonne National Laboratory. The machine has a similar allocation award
procedure than SDSC. Proposals are required to demonstrate the ability to enable new science
through the usage of Mira. Atlas cross-compiled the Alpgen event generator [13] using the IBM
XL compilers for Mira and e↵ectively ran multiple instances of Alpgen in parallel [14]. Miras
almost 800k cores are subdivided into nodes and Miras minimal partition size is 512 nodes. This
allows Atlas to use backfill queues to run Alpgen jobs on individual free partitions. Currently,
jobs are submitted manually through a custom workflow system. In the future, the goal is to
integrate Mira into the Atlas pilot-based submission infrastructure.

Both examples show that the usage of HPC installations for traditional HEP applications is
possible and we can expect more usage examples in the future.

5. The Cloud Allocation Model
The computing activities of experiments are not constant and, rather, follow peaks and valleys
of demand as shown in Fig. 1. These are influenced by external factors, such as instrument
operations, social events, conferences, holiday festivities, etc. Until recently, the only feasible
approach to satisfy these peaks consisted in building computing centers at National Laboratories
and Universities and procuring enough computing resources there. This spurred the creation of

resource federations and sharing agreements, embodied by Grid consortia, so that potential
large available o↵-peak capacity could be utilized opportunistically by all members of the
federation [15, 16]. As the needs for peak capacity grows, however, this strategy is becoming
cost-prohibitive.

The emergence of Commercial Clouds provides a new solution to this problem. Resources have
a cost only when utilized, as if they were rented rather than owned. Commercial providers o↵er
seemingly-infinite resource capacity available on short time scales. As such, the cost of computing
time is the same when renting one computing resource for 1,000 hours or 1,000 resources for
one hour. There are several challenges for Cloud computing to become competitive with the
Computing Centers managed by the scientific community, in terms of cost, reliability, and ease
of use. Several HEP experiments and facilities, including Atlas, CMS, STAR, NOvA as well as
BNL and Fermilab, are working with Cloud providers to address these challenges [17, 18, 19, 20].
Currently, the areas of work include the development of realistic economic models, resource
provisioning, networking, storage, and on-demand services. We will go into more detail for all
of these in the following.

5.1. Resource Provisioning
Commercial Cloud providers implement proprietary application programming interfaces (API)
to enable the provisioning of resource. To avoid vendor lock-in, many HEP communities rely
on commonly used job management layers, such as HTCondor, to abstract access to di↵erent
providers. HTCondor enables access to di↵erent Clouds by supporting the proprietary interfaces
of a few Cloud Providers as well as the Amazon EC2 interface. This is a widely emulated
interface that enables access to several providers, although with limitations, considering that it
is not a standardized interface. This strategy makes provisioning technically possible, but does
not alleviate the challenge of balancing demand for computing with cost. Two major challenges
for our current technology include

(i) the ability to expand and contract provisioned resources to control cost while the job queue
is full;

(ii) fully integrate market price-based solutions to provision Virtual Machines.

The first challenge is mainly related to policy. The priority of computational activities among
scientific communities are not always straight forward. Some activities may be urgent but
considered low priority. A combination of urgency and priority drives the policy to expand and
contract the pool of resources to balance costs. For the second challenge, a popular example
of a market-based provisioning solution is Amazon Spot pricing. The user bids the maximum
price that he is willing to pay for the resource. Until the market price is below the bid, the user
has access to the resource. When the market price goes above the bid, the resource is retired
within a few minutes. The price varies following the demand for resources on the market.
Many HEP workflows are good candidates to use Spot pricing. The Grid, in fact, implements
similar preemption mechanisms when users run on opportunistic resources i.e. resources made
available on the Grid, but not owned by the job submitter. On the Grid, preemption is typically
implemented by the batch scheduler, which kills the job processes to make the resources available
to the higher-priority job (typically a job of the resource owner). To run e↵ectively on the Grid,
most computing operations had to be made already resilient to job failure and, thus, could cope
with preemption. Considering that jobs are generally submitted in bulk as part of a computing
campaign, the commonly used mechanisms to achieve that include

jobs checkpointing: the state of the job is saved and resumed when the failed / preempted
jobs are relaunched

bookkeeping: the global state of the computation is saved through appropriate bookkeeping,
so that failed jobs in a campaign can be resubmitted and the computation resumed without
duplication of work (e.g. SAMWeb database of files already “consumed” in a dataset [21])

stateless jobs: jobs in a campaign are all equivalent to each other (e.g. some Monte Carlo
production) and can be simply relaunched

minimal unit of computation: applications process very short units of computation (e.g. 1
event for 10 minutes), thus relaunched computations have minimal duplication (e.g. Atlas
Event Service [22])

5.2. Economic model
With commercial Clouds becoming mainstream, computing centers at Laboratories and
Universities have the choice to dynamically expand their resource pool. The decision of when to
expand the pool depends on several factors, including cost. To properly manage the size of the
pool, computing centers face the challenge of fully understanding their costs and compare them
with the commercial providers. Preliminary cost estimates to run a “modern” computing core for
one hour at National Laboratories, such as Fermilab and Brookhaven, are about $0.03 and $0.04
respectively [23]. For comparison, a basic virtual machine with 1 core at Amazon (m3.medium
instance) cost $0.07. The same instance, however, cost as low as less than $0.01 using Spot
pricing [24]. In addition to understanding the local cost for computing, however, predicting the
costs of Commercial Cloud resources can also be a challenge. To develop an understanding of
such costs, we have run computational campaigns with real physics applications on Amazon
Web Services (AWS). In 2014, Fermilab has run a few Monte Carlo simulation campaigns for
the NOvA experiment [25]. The largest consisted of 3,300 jobs distributed between AWS and
the local Fermilab Cloud infrastructure (FermiCloud) for a scale of 1,000 jobs each (see Fig. 3).
On AWS, we used dual core virtual machines (at $0.14 / h) running two jobs per machine. The
total cost was $449, split between computational charges for $398 and data transfers for $51.
Limiting the amount of egress data transfers e.g. by limiting auxiliary information such as log
files, was key to contain that cost. Since then, however, AWS has made available to research
institutions special data egress fee waivers to further reduce those costs (see Sec. 5.4).

Figure 3. Shown is the NOvA MC campaign running 1000 jobs in parallel on AWS.

To continue the integration of the job management infrastructure with AWS for the NOvA
experiment, AWS has awarded an educational grant to Fermilab. The goal of the grant is to
demonstrate the continuous availability of the resources at AWS throughout a year. We plan

to run data reconstruction for the 2014 / 2015 NOvA dataset for raw data and Monte Carlo in
16 computational campaign for a total of 2M CPU hours. As our capabilities improve, we aim
to demonstrate that using the spot pricing market for this type of physics computation is cost
e↵ective and as available as the Fermilab resources.

5.3. Storage
The e↵ective utilization of compute resources depends on the e↵ective handling of data. In
general, locality of the data is known to make a di↵erence. In particular for output data transfer,
abrupt termination is a concern when provisioning resources with spot pricing. Storage locality,
however, is not always more cost e↵ective, according to our model. We consider the case where
multiple jobs are submitted to the Cloud for execution and terminate approximately at the
same time. We want to transfer the output data back to the home institution. We evaluate two
strategies, graphically represented in Fig. 4:

(i) Jobs attempt to transfer data directly to the remote storage at the home institution; the
storage system will accept the data transfer with a certain limit on the ingress bandwidth.
If data transfer is coordinated among all jobs, some jobs will transfer the data and then
terminate, while others will wait in a queue. Irrespectively, virtual machines will be idle
i.e. blocked on IO without running any computation for as long as the data transfer last.
In addition to the data egress charges, running these idle virtual machines will contribute
to the total cost.

(ii) Jobs transfer data to local storage at AWS (Simple Storage Service - S3). Because of the
high level of scalability, all jobs will be able to transfer the data at the same time using
high-bandwidth. The full dataset can be transferred asynchronously directly from S3 to the
home institution later on e.g. initiating the transfer from the home institution. The data
egress charges will be the same as in the previous strategy. This time, however, we pay for
storing the data in S3, instead of idle virtual machines.

Depending on the bandwidth available to the storage system at the home institution, the
number of running VMs and the amount of data to transfer, one strategy may be more cost
e↵ective than the other. For example, Lets assume to run 1,000 jobs on 1,000 VMs of type
m3.medium ($0.07/h), each transferring 1 GB of output. The cost of data egress is $120
irrespective of the strategy. The cost of storing the 1 TB data in S3 is generally negligible
if the transfer is automatically triggered at the end of the job and then the data is erased. If
the transfer is initiated manually, however, storage has a cost. For example, if it takes a week
to start the transfer back to the home institution, it is about $8. Adding related costs, such
as the costs of Input / Output requests to S3, the total cost would be approximately $132. In
comparison, if we transferred the data directly from the VMs to the home institution, the cost
would vary (statistically) depending on the aggregate bandwidth to storage. For example, for
20 Gbps, the cost of idle VMs would be $8 for a total of $128; for 2 Gbps the cost would be $78,
for a total of $198. We are preparing to measure the cost of these strategies in realistic testbeds
in the summer 2015.

5.4. Networking
In the Grid model, participating institutions are connected through scientific networks, such as
Internet2 and ESNet in the US. These organizations absorb the cost of data transfer and, as
such, this cost is hidden to the end users. This often leads to a feeling among the user community
that network is a “commodity”, rather than a resource. With the transition to the Cloud model,
many of these costs are exposed. Commercial Cloud providers typically allow data ingress for
free, but charge for data egress and some internal data transfers [24]. Historically, however,

Figure 4. Strategies to e↵ectively handle output data for cloud applications.

the data egress fees have acted as an economic barrier to the adoption of Cloud computing for
many scientific communities. Over the past year, the scientific networks have worked to improve
their network peering with AWS [26]. Absorbing much of the cost of data transfer, they are
in the unique position to negotiate data egress fee discounts for the scientific community. In
particular, Internet2 and ESNet have negotiated a data egress fee waiver with AWS, by which
data transfers costs below 15% of the total monthly cost are waived. As these agreements are
new, some of the contractual terms are still being refined to make this an opportunity for both
universities and national laboratories. Together with cost reduction, the scientific networks are
working to improve the connectivity to AWS. Today ESnet peers with AWS at three AWS zones
in Seattle, Sunnyvale (CA), and Ashburn (VA). Using the default routed network, this peering
allows for a connectivity of 10 GE at each point, with a planned 100 GE peering at Seattle to
come in the summer. In addition to the general routed network, AWS o↵ers a DirectConnect
service, whereby network ports are reserved for certain sites. Through a pilot project, this allows
for a dedicated peering of 10 GE with BNL at Ashburn and of 20 GE (2x10GE) with ESNet at
Seattle. This reserved bandwidth can be exploited by setting up dedicated circuits between the
site and AWS.

5.5. On-demand Services
Scientific computations rely on several dependent services, such as databases, software
distribution, storage, job submission queues, etc. Some of these services, such as the ones
o↵ering data caching, are known to improve the e�ciency of the computation when local.
As the scale of the scientific workflows running on Cloud platforms increases, the ability of
instantiating dependent services also on the Cloud becomes important to improve the e�ciency of
the computation and, ultimately, reduce cost. We refer to these services, which are instantiated
following the scale of scientific workflows that are executed on the Cloud, as on-demand services.
Through our R&D programs, we have started to experiment with on-demand services such as
software distribution and job submission queues. We use the CERN Virtual Machine File

System (CVMFS) [27] for software distribution. The system relies on a network of software
repositories made available to remote clients through the HTTP protocol. As such, the system
can scale through the adoption of web caching services, such as Squid. Our early attempts to run
scientific workflows on AWS used software distribution caches at Fermilab. The lack of cache
locality at AWS caused high latencies in the remote access of the software through the Wide
Area Network. In addition, it caused a large number of access requests directed at Fermilab,
rather than at a local cache, and overwhelmed the Fermilab distribution system. To overcome
these limitations, we have developed mechanisms to elastically scale web data caching services
and use them for software distribution (see Fig. 5). In short, we run a Squid server in a virtual
machine at AWS. The server can be accessed through an Elastic Load Balancer, which defines
a single entry point to the data caching system for the clients. The network tra�c on the Squid
VM is monitored through an AWS service called “Autoscaling Group”. As the tra�c increases
because of demand, the autoscaling group can elastically instantiate additional Squid servers.
These, after their cache is loaded, enable the automatic scaling of the data distribution service.
In addition, the autoscaling group can retire Squid servers as the load to the system decreases
below a set threshold.

Figure 5. Mechanisms to elastically scale a squid web data caching service in an AWS service
called “Autoscaling Group”.

Since web data caching is a service with a limited, generally disposable, state, the automated
scaling of the service is relatively straight forward. More care had to be taken for the automated
scaling of job submission queues. In particular, the scaling down of the service required for the
system to wait the draining of the user jobs, a process that may take days. This is an active
area of R&D.

6. Virtual Facility
The elasticity promised by commercial Cloud providers can not only be used to the benefit of
VOs or science communities. Also traditional Grid sites can benefit from it.

In what we call the virtual facility approach, a Grid site would not provision anymore
all needed resources through physical hardware. That hardware would need to be operated
and maintained in the sites own data centers. Sites could fulfill their users needs through
a combination of owned and rented resources, therefore alleviating the e↵ect of having to
provision for peak demand and rather be more elastic and cost e↵ective. Sites would develop a
cost model for physical resources and commercial Cloud resources and would optimize costs by
choosing a balance between them. The agreement between users and sites about service levels
of resources would stay the same. The site, however, would need to make sure that their usage

of Cloud resources would yield in the same service levels as their own physical resources. This
would include investigating storage and on-demand auto-scaling service solutions for Clouds as
discussed above. In the end, sites could provide complete solutions for their users with their
jobs running transparently on physical or rented hardware, while optimizing costs for the sites.

7. Community Solutions
We have discussed three di↵erent resource providers and how they can be integrated to run HEP
applications. Utilizing these providers e�ciently and at high scale however requires technical
knowledge and e↵ort. Large VOs, such as the LHC VOs, have their own teams of experts
that take care of integration and operations. Not every VO, however, can a↵ord this level
of sophistication. To address this limitation, organizations have been funded to provide the
community at large, even beyond HEP, with the capabilities, services, and infrastructure to
execute their applications at scale on multiple resource providers. One such organization is the
Open Science Grid (OSG) [15].

The Open Science Grid was initially founded with the goal to share the infrastructure of
the LHC experiments and other Experiments, Universities, and Laboratories in the US. From
the beginning, the emphasis was to include scientific communities beyond HEP to transfer
the expertise of the LHC experiments to run HTC applications at high scale to multiple
scientific disciplines. The community e↵ort is based on the premise that resource owners want
to share their resources to maximize the benefit to all without relinquishing control of their local
resources. Major clusters at Universities and National Laboratories connect to the OSG and
control the sharing policies locally.

One goal of OSG is that researchers use a single interface to all kind of resources: resources
they own; resources others are willing to share; resources that they have an allocation on (for
example HPC installations); resources they buy from a commercial (Cloud) provider. OSG
focuses on making this technically possible.

OSG operates a shared production infrastructure, called the Open Facility. It is based on
glideinWMS and enables researchers to easily and e�ciently run on di↵erent resource providers.
OSG also maintains and advances a shared software infrastructure, called the Open Software
Stack. It enables researchers to use common tools and techniques to execute their applications at
scale on the OSG. In addition, OSG takes care of documentation and training of technologies and
techniques to spread the knowledge across researchers, IT professionals, and software developers,
creating and Open Ecosystem all research groups to benefit from the advances of the distributed
high scale HTC model.

Fig. 6 shows a schematic setup of the OSG Open Facility, where di↵erent user and user groups
are provided with facilities tailored to their needs to connect to the OSG.

Single Principal Investigators (PIs) can benefit from the OSG Connect service, whereby
OSG operates a login node for the researcher and provides disk space and a software repository.
Through the common submission infrastructure, OSG assists the PI to provision resources across
the OSG facilities. OSG maintains also a dedicated instance of the OSG Connect service to serve
the resource needs of researchers from the HPC community. They are awarded allocations on
OSG through the XRAC process of XSEDE [28].

Universities and laboratories that are connected to the OSG have the possibility to also
benefit from unused capacity at other OSG facilities by moving excess local load to the OSG, as
well through HTCondor and glideinWMS, therefore virtually expanding their local resources.

LHC experiments and other large VOs use the OSG directly by operating OSG sites and using
them through their own submission infrastructures, but gaining access to other OSG facilities
as well.

Figure 6. Schematic setup of the OSG Open Facility.

8. Resource Allocation Models
All three presented resource provider types have very di↵erent resource allocation models. The
Grid allocates resources through pledges given to VOs at sites. These pledges are constant over
time and usually given for a year at a time and then renewed. Commercial Clouds follow an
economic model where users pay only for what they use. There is no predefined time structure,
provisioning 1 CPU for 1000 days costs the same as 1000 CPUs for 1 day. HPC installations grant
allocations on their facilities in the form of CPU time that can be used in a given time frame.
All three allocation models have di↵erent time frames and di↵erent mechanisms of defining the
amount of resources allocation (Grid: job slots, Cloud: cores, HPC: CPU time). Although
still in its infancy, the integration of these allocation models would simplify the operations of
the composite cyberinfrastructure. We dont have an immediate solution on how to seamlessly
integrate these resource providers and also newer ones that have not been mentioned here, but
we think it is important to bring up the issue and pose the question to the community to start
the discussion and develop solutions on how to combine these resource allocation models.

9. Summary and Outlook
In this paper, we discuss how the resource usage for HEP and other sciences is changing to
include more types of resource providers. The Grid is being augmented by commercial Clouds
and HPC providers. Service developed for the Grid, such as workload management systems, are
enhanced to integrate the new resource providers through pilot-based submission systems like
glideinWMS. The integration of commercial Clouds poses challenges in several areas. As these
are addressed, we envision that Clouds will provide an ever larger fraction of the resource pool
through the use of cost competitive models, such as the spot market price.

HPC installations are currently used to solve specific problems in HEP computing. As the
community develops more experience in the operations of HPC, we envision growth opportunities
in the resource pool from this provider type. We discussed the concept of the virtual facility
combining owned and rented resources to optimize costs and provide more elasticity for the
users. We think that this concept has several benefits for a facility and we expect to hear
reports from implementations and modifications to the concept in the future. We also discussed
a community solution based on the Open Science Grid, which enables the whole community
from individual researchers to large VOs to benefit from the advances in distributed large scale
HTC application execution. We think the approach of the OSG is an excellent example how
the advances coming from the Grid world combined with new resource providers can be easily
utilized by a larger community. In the end, we discussed that although we can use a variety of
resource providers transparently through our submission infrastructures, the allocation model

are su�ciently di↵erent that new solutions need to be found for a tighter integration.

10. Acknowledgements
We would like to thank the various funding agencies from all over the world that made the
research discussed here possible, particularly the Department of Energy in the United States.
Many thanks to all our colleagues who helped gathering and organizing information and for
fruitful discussions, especially Stuart Fuess, Burt Holzman, John Hover, Bo Jayatilaka, Jim
Kowalkowski, Ruth Pordes, Panagiotis Spentzouris, Steve Timm, Margaret Votava, Frank
Würthwein.

References
[1] Evans L and Bryant P 2008 Lhc machine Journal of Instrumentation 3 S08001 URL http://stacks.iop.

org/1748-0221/3/i=08/a=S08001

[2] CERN 2014 5th Evian Workshop on LHC beam operation (Geneva: CERN) organisers: Lamont, M; Meddahi,
M; Goddard, B URL https://cds.cern.ch/record/1968515

[3] et al S A 2015 Upgrade of the atlas central trigger for lhc run-2 Journal of Instrumentation 10 C02030 URL
http://stacks.iop.org/1748-0221/10/i=02/a=C02030

[4] Bawej T A e a 2014 The New CMS DAQ System for Run 2 of the LHC Tech. Rep. CMS-CR-2014-082 CERN
Geneva URL https://cds.cern.ch/record/1711011

[5] Chatrchyan S et al. (CMS) 2012 Observation of a new boson at a mass of 125 GeV with the CMS experiment
at the LHC Phys.Lett. B716 30–61

[6] EGI Glossary: https://wiki.egi.eu/wiki/Glossary_V1
[7] Bird I, Bos K, Brook N, Duellmann D, Eck C et al. 2005 LHC computing Grid. Technical design report
[8] Sfiligoi I, Bradley D C, Holzman B, Mhashilkar P, Padhi S and Wurthwein F 2009 The pilot way to grid

resources using glideinwms Proceedings of the 2009 WRI World Congress on Computer Science and
Information Engineering - Volume 02 CSIE ’09 (Washington, DC, USA: IEEE Computer Society) pp
428–432 ISBN 978-0-7695-3507-4 URL http://dx.doi.org/10.1109/CSIE.2009.950

[9] Thain D, Tannenbaum T and Livny M 2005 Distributed computing in practice: the condor experience.
Concurrency - Practice and Experience 17 323–356

[10] Blum T, Van de Water R, Holmgren D, Brower R, Catterall S et al. 2013 Working Group Report: Lattice
Field Theory (Preprint 1310.6087)

[11] Amundson J, Macridin A and Spentzouris P 2014 High Performance Computing Modeling Advances
Accelerator Science for High Energy Physics IEEE Comput.Sci.Eng. 16 32–41

[12] Press Release: SDSCs Gordon Supercomputer Assists in Crunching Large Hadron Collider Data
http://ucsdnews.ucsd.edu/pressrelease/sdscs_gordon_supercomputer_assists_in_crunching_

large_hadron_collider_data

[13] Mangano M L, Moretti M, Piccinini F, Pittau R and Polosa A D 2003 ALPGEN, a generator for hard
multiparton processes in hadronic collisions JHEP 07 001

[14] Childers T, Le Compte T, Uram T and Benjamin D 2015 Simulation of lhc events on a million threads
21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) URL
https://indico.cern.ch/event/304944/

[15] Pordes R, Petravick D, Kramer B, Olson D, Livny M, Roy A, Avery P, Blackburn K, Wenaus T, Wrthwein
F, Foster I, Gardner R, Wilde M, Blatecky A, McGee J and Quick R 2007 The open science grid Journal
of Physics: Conference Series 78 012057 URL http://stacks.iop.org/1742-6596/78/i=1/a=012057

[16] Kranzlmller D, de Lucas J and ster P 2010 Remote Instrumentation and Virtual Laboratories ed Davoli
F, Meyer N, Pugliese R and Zappatore S (Springer US) pp 61–66 ISBN 978-1-4419-5595-1 URL http:

//dx.doi.org/10.1007/978-1-4419-5597-5_6

[17] Timm S, Garzoglio G et al. 2015 Cloud services for the fermilab scientific stakeholders 21st International
Conference on Computing in High Energy and Nuclear Physics (CHEP2015) URL https://indico.cern.

ch/event/304944/session/7/contribution/448

[18] Taylor R et al. 2015 Evolution of cloud computing in atlas 21st International Conference on Computing in
High Energy and Nuclear Physics (CHEP2015) URL https://indico.cern.ch/event/304944/session/

7/contribution/146

[19] Balewski J, Lauret J, Olson D, Sakrejda I, Arkhipkin D, Bresnahan J, Keahey K, Porter J, Stevens J and
Walker M 2012 O✏oading peak processing to virtual farm by star experiment at rhic Journal of Physics:
Conference Series 368 012011 URL http://stacks.iop.org/1742-6596/368/i=1/a=012011

http://stacks.iop.org/1748-0221/3/i=08/a=S08001
http://stacks.iop.org/1748-0221/3/i=08/a=S08001
https://cds.cern.ch/record/1968515
http://stacks.iop.org/1748-0221/10/i=02/a=C02030
https://cds.cern.ch/record/1711011
https://wiki.egi.eu/wiki/Glossary_V1
http://dx.doi.org/10.1109/CSIE.2009.950
1310.6087
http://ucsdnews.ucsd.edu/pressrelease/sdscs_gordon_supercomputer_assists_in_crunching_large_hadron_collider_data
http://ucsdnews.ucsd.edu/pressrelease/sdscs_gordon_supercomputer_assists_in_crunching_large_hadron_collider_data
https://indico.cern.ch/event/304944/
http://stacks.iop.org/1742-6596/78/i=1/a=012057
http://dx.doi.org/10.1007/978-1-4419-5597-5_6
http://dx.doi.org/10.1007/978-1-4419-5597-5_6
https://indico.cern.ch/event/304944/session/7/contribution/448
https://indico.cern.ch/event/304944/session/7/contribution/448
https://indico.cern.ch/event/304944/session/7/contribution/146
https://indico.cern.ch/event/304944/session/7/contribution/146
http://stacks.iop.org/1742-6596/368/i=1/a=012011

[20] Colling D et al. 2015 The diverse use of clouds by cms 21st International Conference on Computing in
High Energy and Nuclear Physics (CHEP2015) URL https://indico.cern.ch/event/304944/session/

7/contribution/230

[21] Mengel M, Norman A et al. 2015 Replacing the engines without stopping the train; how a production data
handling system was re-engineered and replaced without anyone noticing 21st International Conference
on Computing in High Energy and Nuclear Physics (CHEP2015) URL https://indico.cern.ch/event/

304944/session/4/contribution/463

[22] Wenaus T et al. 2015 The atlas event service: A new approach to event processing 21st International
Conference on Computing in High Energy and Nuclear Physics (CHEP2015) URL https://indico.cern.

ch/event/304944/session/4/contribution/463

[23] Ernst M, Hogue R, Hollowell C, Strecker-Kellog W, Wong A and Zaytsev A 2014 Operating dedicated
data centers is it cost-e↵ective? Journal of Physics: Conference Series 513 062053 URL http:

//stacks.iop.org/1742-6596/513/i=6/a=062053

[24] Amazon EC2 Pricing http://aws.amazon.com/ec2/pricing/

[25] Norman A 2015 Large scale monte carlo simulation of neutrino interactions using the open science grid
and commercial clouds 21st International Conference on Computing in High Energy and Nuclear Physics
(CHEP2015) URL https://indico.cern.ch/event/304944/session/9/contribution/465

[26] Hover J 2015 Running atlas at scale on amazon ec2 HEPiX Spring 2015 Workshop URL https://indico.

cern.ch/event/346931/session/9/contribution/20

[27] Blomer J, Buncic P, Charalampidis I, Harutyunyan A, Larsen D, and Meusel R 2012 Status and future
perspectives of cernvm-fs Journal of Physics: Conference Series 396 052013 URL http://stacks.iop.

org/1742-6596/396/i=5/a=052013

[28] Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson
G D, Roskies R, Scott J R and Wilkens-Diehr N 2014 Xsede: Accelerating scientific discovery Computing
in Science and Engineering 16 62–74 ISSN 1521-9615

https://indico.cern.ch/event/304944/session/7/contribution/230
https://indico.cern.ch/event/304944/session/7/contribution/230
https://indico.cern.ch/event/304944/session/4/contribution/463
https://indico.cern.ch/event/304944/session/4/contribution/463
https://indico.cern.ch/event/304944/session/4/contribution/463
https://indico.cern.ch/event/304944/session/4/contribution/463
http://stacks.iop.org/1742-6596/513/i=6/a=062053
http://stacks.iop.org/1742-6596/513/i=6/a=062053
http://aws.amazon.com/ec2/pricing/
https://indico.cern.ch/event/304944/session/9/contribution/465
https://indico.cern.ch/event/346931/session/9/contribution/20
https://indico.cern.ch/event/346931/session/9/contribution/20
http://stacks.iop.org/1742-6596/396/i=5/a=052013
http://stacks.iop.org/1742-6596/396/i=5/a=052013

Cloud services for the Fermilab scientific stakeholders

S Timm1, G Garzoglio1, P Mhashilkar1*, J Boyd1 , G Bernabeu1, N Sharma1, N
Peregonow1, H Kim1, S Noh2,, S Palur3, and I Raicu3
1Scientific Computing Division, Fermi National Accelerator Laboratory

2Global Science experimental Data hub Center, Korea Institute of Science and
Technology Information

3Department of Computer Science, Illinois Institute of Technology

E-mail: {timm, garzoglio, parag, boyd, gerard1, neha, njp, hyunwoo }@fnal.gov,
rsyoung@kisti.re.kr, psandeep@hawk.iit.edu, iraicu@cs.iit.edu

Abstract. As part of the Fermilab/KISTI cooperative research project, Fermilab has
successfully run an experimental simulation workflow at scale on a federation of Amazon Web
Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS
(CVMFS) file system to deliver the application software. We established Squid caching servers
in AWS as well, using the Shoal system to let each individual virtual machine find the closest
squid server. We also developed an automatic virtual machine conversion system so that we
could transition virtual machines made on FermiCloud to Amazon Web Services. We used this
system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making
use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On
FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using
a private network routable inside of Fermilab. We present in detail the technological
improvements that were used to make this work a reality.

1. Introduction

The Fermilab scientific program includes several running experiments, both the CMS experiment at
the Energy Frontier, and the various neutrino and muon experiments on the Intensity Frontier. The
ongoing data analysis and simulation for running experiments, combined with a large simulation load
for future facilities and experiments, results in an unprecedented level of computing demand. This
paper describes recent progress in the ongoing program of work to expand our computing to the
distributed resources of grids and public clouds.

As part of the joint collaboration between Fermilab and KISTI, we have a program of work
building towards distributed federated clouds. In the summer of 2014 the primary goal of this
program was to demonstrate a federated cloud running at the 1000 Virtual Machine scale, using our
local private cloud nodes and Amazon Web Services EC2. Our application of choice for this is the
Cosmic Ray simulation of the NOvA experiment far detector at Ash River [9]. This application

* To whom any correspondence should be addressed.

requires negligible input and produces about 250MB of output per job, and is quite computationally
intensive. The NOvA experimenters spent considerable effort in optimizing their code to run at
various sites outside of Fermilab, including loading their code into the OSG OASIS CVMFS server.
The NOvA experiment supplied us with a set of files and scripts, which would generate one full set of
their cosmic ray Monte Carlo, 20000 input files in all, with one job per file.

2. Challenges in using cloud resources at large scale

The main challenge that had to be addressed in expanding to larger scale on the public cloud was
finding a scalable way to distribute the code to 1000 simultaneous jobs. We also needed the capacity
to quickly convert a local virtual image to Amazon Web Services format so we could make changes in
the setup as needed. On the private cloud we had to find a faster and more scalable way to deliver
virtual machine images, and find a more scalable virtual machine instantiation API, as well as add a
significant number of machines to our private cloud. We were able to leverage existing and well-
known tools for these requirements with minor modifications and adjustments.

2.1. Description of Squid Caching and Shoal Discovery Services

The CERN Virtual Machine File System (CVMFS) [2] is widely adopted by the High Energy Physics
(HEP) community for the distribution of project software. CVMFS is a read-only network file system
that provides access to files from a CVMFS Server over HTTP. Though initially developed for virtual
machines it is also used in non-virtualized environments as well. When CVMFS is used on a cluster
of worker nodes, the Squid HTTP web proxy can be used to cache the file system contents, so that all
subsequent requests for that file will be delivered from the local HTTP proxy server. Typically, a HEP
computing site has a local or regional Squid HTTP web proxy [3], with the central CVMFS servers
located at the main laboratory, such as CERN for the LHC experiments. In a remote cloud
deployment we have found it necessary both for security reasons and for network latency reasons to
co-locate the squid web proxies in the cloud.

In IaaS cloud resources the compute nodes and the squid caching proxies are launched
dynamically with addresses that are not predictable in advance. We need to identify new methods to
enable the compute nodes to dynamically discover the Squid services and other services which may be
needed, and reconfigure the compute nodes to use these services. The Shoal mechanism was
developed at the University of Victoria for these purposes [4,5]. We use Shoal as a service that can
dynamically publish and advertise the available Squid servers. Shoal is ideal for an environment using
both static and dynamic Squid servers, and distributed across multiple locations including on-site
machines as well as commercial clouds.

Shoal is divided into three logical modules, a server, an agent, and a client, and is available via the
python package index. The Shoal Server maintains a list of active Squid servers in volatile memory
and receives AMQP messages from them. It provides a RESTful interface for Shoal Clients to
retrieve a list of geographically closest Squid servers. It provides a web user interface to easily view
Squid servers being tracked. The Shoal Agent is a daemon that runs on Squid servers to send an
Advanced Message Query Protocol (AMQP) [6] message to Shoal Server on a set interval. Every
Squid server wishing to publish its existence runs Shoal Agent on boot. Shoal Agent sends periodic
heartbeat messages to the Shoal Server (typically every 30 seconds). The Shoal Client is used by
worker nodes to query the Shoal Server to retrieve a list of geographically nearest Squid servers and
adjust the configuration of the worker node appropriately. Shoal Client is designed to be simple (less
than 100 lines of Python) with no dependencies beyond a standard Python installation. AMQP forms

the communications backbone of Shoal Server. All information exchanges between Shoal Agent
(Squid Servers) and Shoal Server are done using this protocol, and all messages are routed through a
RabbitMQ [7,8] Server.

2.2. Design and Implementation of Squid Service in the Cloud

We deployed the software stack of CVMFS (network file system), Squid (on-demand caching service)
and Shoal (squid cache publishing and advertising tool designed to work in fast changing
environments) on FermiCloud (private cloud) and on Amazon Web Services (Public cloud) using
Serverless Puppet (Puppet apply). As a part of this work, we developed Puppet modules and scripts
for installing and deploying Shoal client, agent and server. We also modified Shoal Server such that it
could publish Squid Servers running on EC2 instances where the Squid port is only visible on the
internal AWS Virtual Private Cloud network, and contributed this change back to the upstream
developers.

The architecture of large scale batch of dynamically instantiated FermiCloud and EC2 worker

nodes provided with network file system, on-demand caching service and a cache publishing and
advertising tool is shown in Figure 1.

When a new Shoal Server node is instantiated, the Shoal Server and its dependent components

including Apache and RabbitMQ server are installed on startup of the machine. For this purpose we
constructed a Puppet script which can be run at boot time from a normal Puppet server, or as a
standalone script with Puppet apply, using the cloud-init features of AWS or the contextualization
features of OpenNebula respectively.

When a Squid Server is instantiated dynamically, the Squid service and the Shoal Agent are

installed on the startup of the machine, using Puppet apply. The shell script to execute the Puppet
apply command is included as part of the launch of the virtual machine and uses the cloud-init features
of AWS, or the contextualization features of OpenNebula respectively. We used the existing Puppet
Forge modules for Squid as part of this work.

Figure 1: Architecture of Dynamically Instantiated EC2 Instances with On-Demand Caching Service

and a Cache Publishing Service

When a worker node is instantiated, the Shoal Client, the CVMFS client, and other unrelated
software are installed at the startup of the machine via a startup script that uses Puppet apply. This is

done on FermiCloud. We use publically available Puppet modules for the CVMFS client. It could be
done on AWS as well but in practice we pre-install it and send it along with our virtual machine
worker node image. The Shoal Client is a cron job that queries the Shoal Server using the REST
interface to get the closest Squid Server and is configured to run every 2 hours. Shoal Client updates
the proxy address in the CVMFS configuration file. When CVMFS client tries to download any
software from CVMFS server, the request passes through the configured Squid Server. The Shoal
Client was later modified to modify the system configuration files to also send other non-CVMFS
related traffic such as fetching certificate revocation lists to the dynamically detected nearest squid
server. Experimental software may also need to be reconfigured to use the dynamically detected
nearest squid server.

 Our goal was to have the FermiCloud VMs on the private net use the on-site Squid servers and

the AWS VMs use Squid servers that were instantiated on AWS. In this way we did not have to open
the Fermilab Squid servers to the outside Internet and we also delivered a much faster Squid service
due to decreased latency. We found that one m3.large Squid server in AWS (2 cores, 7.5GB RAM, 30
GB Disk) was sufficient to serve the load for caching code for 1000 running jobs. Any element code
would only be fetched once to the AWS squid server and all other AWS virtual machines would
access it from there.

2.3. Virtual machine conversion system

We also required a faster way to upload specialized virtual machines to Amazon Web Services. Our
goal was to run on AWS an image as close as possible to the one used on private deployments. We
leveraged our existing mechanism that manufactures our stock image for the private cloud and added
extra steps to it that strip out a few Fermilab-specific configurations and add a few Amazon-specific
configurations. The standard image is uncompressed from qcow2 to raw format. Then it is copied to
another running image on AWS which has an extra disk mounted. The extra disk is then saved as a
snapshot. Once the virtual machine image is stored on Amazon then all copies of the virtual machines
are launched from that. For our worker node virtual machines we used the Amazon m3.large instance
type as mentioned above because it had a good match of available cores (2) and enough scratch space
(30GB SSD) to host two jobs at once.

2.4. Private cloud scalability improvements

Our private cloud, FermiCloud, was running OpenNebula 3.2 at the time. The “econe” emulation of
the AWS EC2 API was functional for launching small numbers of virtual machines and had been used
at times when an experiment needed a batch slot with memory larger than the then-default 2GB per
batch slot on FermiGrid. There were known problems if you tried to launch 20 or more virtual
machines. The file system of GFS2 on SAN was adequate for the initial 23 hosts that it served but
could not be expanded to a large scale. In addition we did not have public IP address space readily
available to launch 1000 more virtual machines on the public network.

140 old Dell PowerEdge 1950 machines with dual quad-core Xeon processors and 16 GB of RAM
were made available for this test. A private virtual LAN was made available to these nodes for use by
the virtual machines. This private LAN was assigned a routable private network which could be
reached from anywhere inside Fermilab. We installed a new test head node based on OpenNebula 4.8.
For an image repository we used space on our BlueArc NAS server. This proved to be quite scalable.

2.5. Job Submission and Provisioning

The NOvA experiment users used the new client/server “Jobsub” submission system to submit

their jobs. This is the standard job submission software that Intensity Frontier users at Fermilab use to
submit to local Fermilab resource, opportunistic use on the Open Science Grid, and the private and
commercial clouds. The GlideinWMS [1] provisioning system then identifies user jobs in the queue
that are suitable for running on our private cloud or on commercial clouds, and starts virtual machines
on the appropriate cloud if necessary by use of the EC2 Query API. Once the virtual machine starts
up, there is a process at boot time that checks the integrity of the virtual machine and starts up a
HTCondor daemon. This then calls back to the batch system to declare itself available to run a job.
When no further jobs are available, the HTCondor daemon exits and the virtual machine then
terminates itself.

GlideinWMS is well suited to distributing workloads evenly across a number of relatively

homogeneous computing platforms such as local clusters, grids, and clouds. Since running on
Amazon Web Services also requires awareness of available budget, we have identified a program of
work to add an external policy engine to handle the financial decision making.

2.6. Performance Evaluation

Figures 1a and 1b show the results of the final and largest trial, in which 1000 jobs ran simultaneously
both on our local private cloud and on Amazon Web Services. The completion time of the jobs was
relatively the same. The ramp-up factor on AWS was limited only by the submission rate that was
configured into our GlideinWMS factory. The slower ramp-up time for jobs on our local cloud was
more due to the virtual machine launching pattern we were using at the time, which caused all 8 of the
virtual machines to launch on the same node simultaneously, significantly stressing the local disk. We
have since switched to a scheduling algorithm that distributes the launch more equally across the
cloud.

We ran a total of 3300 jobs on AWS in the largest trial, shown in Figure 1A. Each job generated on
average 250MB of output, the total output was 467GB for which we incurred $51 in data transfer
charges. We incurred $398 in virtual machine charges, with a peak of 525 virtual machines running.
This work was done with “On-demand” instances. It could have been done much more cheaply with
“spot pricing” from Amazon and our current program of work is now doing this on a regular basis.
We also evaluated the possibility of storing the data temporarily to the Amazon Simple Storage
Service (S3) before staging it back. For this use case with a fairly small number of machines and
small data, it proved to be both faster and cheaper just to stage directly back to Fermilab. We expect
that we will at some point need to do staging for more data-intensive tasks and have developed S3-
aware data movement tools for this purpose.

3. On-demand scalable services

The summer of 2014 testing demonstrated the successful operation of a classical service discovery
model of locating a Squid server. Since then we have demonstrated an automated launch of a Squid
service in Amazon Web Services. This service makes use of the Elastic Load Balancer service to
provide a single entry point to the service, which can have multiple Squid servers backing it up, and an
Auto Scaling Group to automatically add more Squid servers when the load goes higher, and remove
them when the load goes down. A CloudFormation service can be used to start the whole stack of
services. We plan to use native cloud scaling mechanisms like this wherever possible in future as we
address cloud workflows of 100-1000 times larger than the ones described in this work. Amazon’s
Route53 service is used to attach a predictable address to the scalable Squid service.

Figure 2a. Number of jobs running as a function of time of day, Amazon AWS

Figure 2b. Number of jobs running as a function of time of day, Fermilab private cloud

4. Conclusions and Future Work

We have demonstrated the capacity to successfully run an Intensity Frontier application at scale both
in the public and the private cloud. The cloud submission capacities remain available to our
production users. Our future program of work will now focus on integrating the commercial cloud

0	

200	

400	

600	

800	

1000	

1200	
2:2

1	
2:3

3	
2:4

5	
2:5

7	
3:0

9	
3:2

1	
3:3

3	
3:4

5	
3:5

7	
4:0

9	
4:2

1	
4:3

3	
4:4

5	
4:5

7	
5:0

9	
5:2

1	
5:3

3	
5:4

5	
5:5

7	
6:0

9	
6:2

1	
6:3

3	
6:4

5	
6:5

7	
7:0

9	
7:2

1	
7:3

3	
7:4

5	

0	

200	

400	

600	

800	

1000	

1200	

1:5
5	

2:1
1	

2:2
7	

2:4
3	

2:5
9	

3:1
5	

3:3
1	

3:4
7	

4:0
3	

4:1
9	

4:3
5	

4:5
1	

5:0
7	

5:2
3	

5:3
9	

5:5
5	

6:1
1	

6:2
7	

6:4
3	

6:5
9	

7:1
5	

7:3
1	

7:4
7	

8:0
3	

8:1
9	

8:3
5	

8:5
1	

9:0
7	

9:2
3	

9:3
9	

9:5
5	

providers more closely into our facility operations. The overall goal is to make the presence of the
cloud resources be transparent to our end users, running even the most data-intensive applications on
the cloud if necessary. We are partnering with the US research networks and commercial cloud
providers to facilitate this work. We are grateful especially for all the work that was done by the
NOvA experimenters to help make this happen.

Acknowledgements
Work supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359, and by
CRADA FRA 2014-0002 / KISTI-C14014.

References
[1] Sfiligoi, I., Bradley, D. C., Holzman, B., Mhashilkar, P., Padhi, S. and Wurthwein, F. (2009).

"The Pilot Way to Grid Resources Using glideinWMS", 2009 WRI World Congress on
Computer Science and Information Engineering, Vol. 2, pp. 428–432.
doi:10.1109/CSIE.2009.950.

[2] J. Blomer et al, Status and future perspectives of CernVM-FS J. Phys.: Conf. Ser. 396052013,

doi:10.1088/1742-6596/396/5/052013

[3] Squid - HTTP proxy server http://www.squid-cache.org, 2015

[4] Gable, Ian, et al. Dynamic web cache publishing for IaaS clouds using Shoal. Journal of

Physics: Conference Series. Vol. 513. No. 3. IOP Publishing, 2014.

[5] I. Gable et al, A batch system for HEP applications on a distributed IaaS cloud J. Phys.: Conf.

Ser. 331062010, doi:10.1088/1742-6596/331/6/062010

[6] Python Package Index https://pypi.python.org/, 2015

[7] RabbitMQ - AMQP Messaging software, http://www.rabbitmq.com, 2015

[8] S.Vinoski, Advanced Message Queuing Protocol, IEEE Internet Computing 1087,

doi:10.1109/MIC.2006.116

[9] A. Norman, The NOvA Experiment, A Long-baseline Experiment at the Intensity Frontier. PoS,

HQL2012 (2012).

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
4

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Virtual Facility at Fermilab: Infrastructure and
Services Expand to Public Clouds

Steven Timm1
Fermilab
P.O. Box 500, Batavia, IL 60510, USA
E-mail: timm@fnal.gov

Gabriele Garzoglio
Fermilab
P.O. Box 500, Batavia, IL 60510, USA
E-mail: garzogli@fnal.gov

Stuart Fuess
Fermilab
P.O. Box 500, Batavia, IL 60510, USA
E-mail: fuess@fnal.gov

Glenn Cooper
Fermilab
P.O. Box 500, Batavia, IL 60510, USA
E-mail: gcooper@fnal.gov

Abstract:

In preparation for its new Virtual Facility Project, Fermilab has launched a program of work to
determine the requirements for running a computation facility on-site, in public clouds, or a
combination of both. This program builds on the work we have done to successfully run
experimental workflows of 1000-VM scale both on an on-site private cloud and on Amazon
AWS. To do this at scale we deployed dynamically launched and discovered caching services
on the cloud. We are now testing the deployment of more complicated services on Amazon
AWS using native load balancing and auto scaling features they provide.

The Virtual Facility Project will design and develop a facility including infrastructure and
services that can live on the site of Fermilab, off-site, or a combination of both. We expect to
need this capacity to meet the peak computing requirements in the future. The Virtual Facility
is intended to provision resources on the public cloud on behalf of the facility as a whole instead

1

 Speaker

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
4

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

of having each experiment or Virtual Organization do it on their own. We will describe the
policy aspects of a distributed Virtual Facility, the requirements, and plans to make a detailed
comparison of the relative cost of the public and private clouds. This talk will present the
details of the technical mechanisms we have developed to date, and the plans currently taking
shape for a Virtual Facility at Fermilab.

The International Symposium on Grids and Clouds (ISGC) 2015
March 15-20, 2015
Academia Sinica, Taipei, Taiwan

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
4

Virtual Facility at Fermilab Steven Timm

 3

1. Introduction

The Fermilab scientific program includes several running experiments, both the CMS
experiment at the Energy Frontier, and the various neutrino and muon experiments on the
Intensity Frontier. The ongoing data analysis and simulation for running experiments,
combined with a large simulation load for future facilities and experiments, results in an
unprecedented level of computing demand. This paper describes recent progress in the ongoing
program of work to expand our computing to the distributed resources of grids and public
clouds. We will also describe our plans for the Virtual Facility Project, which will integrate
these technologies into our computing facility.

1.1 Definitions

In this paper the Facility refers to all computing resources and storage resources that are
provided on behalf of the users. This includes on-site resources, friendly grid sites,
opportunistic grid usage, and use of private, community, and commercial clouds. The Virtual
Facility consists of the resources that we dynamically provision, plus the services that allow us
to provision virtual machines and grid slots, as well as the auxiliary services that are required to
make analysis possible at remote sites such as the public cloud. Provisioning is defined as the
process of contacting grid and cloud sites on behalf of the users to obtain batch slots for job
execution.

1.2. Background

The process of provisioning job slots has historically been done by individual Virtual
Organizations. At Fermilab the GlideinWMS system has been used for this purpose. It is
designed to request resources from a pre-configured set of hosts, both local and remote. These
resources are presented as a unified virtual resource pool to the users, commonly referred to as
the “user pool”. The combination of unified provisioning and automated credential
management has proven a powerful combination to get thousands of users doing grid
computation on a regular basis. The developers of GlideinWMS and the HTCondor system on
which it relies have worked with various cloud providers over the years to support submission
of virtual machines to various public and private clouds including Amazon Web Services,
Google Compute Engine, OpenNebula, and OpenStack. The virtual machines submitted by
GlideinWMS start up a condor daemon, which calls back to the user pool and is ready to accept
a job.

1.3 Business Case for Commercial Clouds
 The workloads of our current experiments are stochastic in nature. There is some
amount of continuous usage, punctuated by large peaks of usage. This is often related to extra
analysis that must be done just before conferences. The peaks of demand can be up to four
times the regular usage. We believe it is not financially feasible to size our computing clusters
to handle the absolute peak demand. Nor can we rely on opportunistic grid slots to fill the gap
because when our site is under high pre-conference demand the rest of them are likely to be

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
4

Virtual Facility at Fermilab Steven Timm

 4

busy as well. It is therefore worthwhile to carefully consider commercial clouds as an option to
meet this peak demand. We know it is technically possible to run on the commercial cloud.
What we need to demonstrate now is sustainability and efficiency, as well as financial
feasibility.

2. Workflows on cloud to date

As part of the joint collaboration between Fermilab and KISTI, we have a program of
work building towards distributed federated clouds. In the summer of 2014 the primary goal of
this program was to demonstrate a federated cloud running at the 1000 Virtual Machine scale,
using our local private cloud nodes and Amazon Web Services EC2. Our application of choice
for this is the Cosmic Ray simulation of the NOvA experiment far detector at Ash River. This
application requires negligible input and produces about 250MB of output per job, and is quite
computationally intensive. The NOvA experimenters spent considerable effort in optimizing
their code to run at various sites outside of Fermilab, including loading their code into the OSG
OASIS CVMFS server. The NOvA experiment supplied us with a set of files and scripts, which
would run one full set of their cosmic ray Monte Carlo, 20000 input files in all, with one job per
file.

2.1 Scaling OpenNebula 4 cloud to 1000 Virtual Machines

 OpenNebula cloud supports launching virtual machines via its emulation of the EC2
interface. The OpenNebula 3 cloud in production since 2012 supported this function but an
OpenNebula upgrade to version 4.8 was necessary to support the bulk launching at the 1000
Virtual Machine level. We also added 140 worker nodes for the purpose of this test. These
were 8-core Dell PowerEdge 1950 servers that were formerly part of the CDF clusters at
Fermilab. The worker nodes were attached to a routable private network, which could access all
network points inside of Fermilab but not outside. We used the Bluearc NAS server as an
image store to distribute the operating image, which is stored in the compressed “qcow2”
format. A puppet script applied at boot time did configuration management on the image. This
was used to install the CVMFS client software and a few other prerequisites including
certificate authority files. Since the goal was to test 1000 virtual machines, we launched 1000
virtual machines with one core apiece. Under normal operation we would run virtual machines
with four cores apiece.

2.2 Scaling Amazon Web Services to 1000 Virtual Machines

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
4

Virtual Facility at Fermilab Steven Timm

 5

 Earlier smaller trials of running jobs on AWS had shown us that the bottleneck was the
proxy caching of the code on AWS. We had been using a Squid proxy server at Fermilab to
cache the CVMFS code, which is not optimal for security reasons or for bandwidth reasons. So
we found it necessary to launch one or more squid services in AWS itself. Since these services
are dynamically instantiated there is no a priori way to know what the IP address of the squid
server will be at any given time. We used the SHOAL discovery system that was written for
this purpose by the team at the University of Victoria. In this system, each squid server
launched in the cloud runs a Shoal Agent that contacts a fixed server at Fermilab via the AMQP
messaging protocol. Each worker node VM then runs a client which calls the Shoal server at
Fermilab which returns a list of possible squid servers, sorted by order of which is closest to the
local VM network-wise. In practice we found that a single squid server in the cloud was
sufficient to serve 500 virtual machines.

 We also required a faster way to upload specialized virtual machines to Amazon Web
Services. It was our goal to run a very similar virtual machine image on Amazon as we run on
our private cloud, based on Scientific Linux. We leveraged our existing mechanism that
manufactures our stock image for the private cloud and added extra steps to it that strip out a
few Fermilab-specific configurations and add a few Amazon-specific configurations. Then it is
copied to another running image on AWS which has an extra disk mounted. The extra disk is
then saved as a snapshot. Once the virtual machine image is stored on Amazon then all copies
of the virtual machines are launched from that. We settled on the Amazon m3.large instance
type because it had two available cores and enough default scratch space (30GB SSD) to host
two jobs at once.

2.3 Results

 Figures 1a and 1b show the results of the final and largest trial, in which 1000 jobs ran
simultaneously both on our local private cloud and on Amazon Web Services. The completion
time of the jobs was relatively the same. The ramp-up time for jobs on our local cloud was
more due to the virtual machine launching pattern we were using at the time, which caused all 8
of the virtual machines to launch on the same node simultaneously, significantly stressing the
local disk. We have since switched to a scheduling algorithm, which distributes the launch
more equally across the cloud.
 We ran a total of 3300 jobs on AWS in the largest trial, shown in Figure 1A. Each job
generated on average 250MB of output, the total output was 467GB for which we incurred $51
in data transfer charges. We incurred $398 in virtual machine charges, with a peak of 525
virtual machines running.

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
4

Virtual Facility at Fermilab Steven Timm

 6

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
4

Virtual Facility at Fermilab Steven Timm

 7

Figure 1a. Number of jobs running as a function of time of day, Amazon AWS

Figure 1b. Number of jobs running as a function of time of day, Fermilab private
cloud

3. Virtual Facility—Expanding the facility to the public cloud

 It is now the goal to integrate the commercial cloud running of batch jobs into the
Fermilab Facility on a transparent basis. We currently have a unified job submission service
based on the “Jobsub” client/server system. Users can currently specify usage model of private
cloud or paid cloud to run on the private cloud or the paid cloud respectively. It is our goal to
shift this paradigm so that the user will specify flags that specify whether their job can run off-
site or not, and then the facility decides transparently whether or not to send it to the
commercial cloud. We also plan to incorporate the provisioning functions of GlideinWMS into
the facility. In this way we will be able to request resources on behalf of the whole facility with
a single set of credentials, rather than requesting them on behalf of each of the approximately 20
active experiments we support. We describe below some of the major work items that will be
necessary to do in this process.

3.1 Data intensive production

 Intensity Frontier data production is typically more data intensive than the cosmic ray
example that we used in the summer 2014 demonstration. For the commercial clouds to be a
transparent extension of our computing facility, we will have to successfully and regularly do
data-intensive data reconstruction and Monte Carlo simulation on the public cloud. For

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
4

Virtual Facility at Fermilab Steven Timm

 8

example, a typical data reconstruction campaign for the NOvA experiment is expected to have
10000 input files on average, 250MB in size, and produce one 250MB output file for each,
taking 3 hours per job. A typical Monte Carlo simulation campaign of a neutrino beam could
take 38000 input files of average 250MB in size and make 250MB of output, taking up to 5
hours per job. We have proposed a program of running six data reconstruction campaigns and
ten Monte Carlo simulation campaigns on Amazon over the course of the next year. This will
be approximately 2.1 million hours of compute time overall. For scale, the NOvA experiment
used approximately 10.2 million hours of compute time total in 2014, and Fermi Grid as a
whole has capacity for 145 million CPU-hours during the course of a calendar year.

 Given the increased amount of data that will be produced by these jobs, we believe it
will be necessary to do local caching of the output results on the S3 service of Amazon before
bringing the data back to Fermilab. In this way we do not have hundreds of virtual machines
waiting for 30-45 minutes just to transfer their data back to Fermilab. There will likely be some
modifications necessary to our higher-level data handling software to support this.

3.2 Provisioning Algorithms

 Currently GlideinWMS operates on a demand-based system. If there are user jobs
which request a particular resource type such as off-site cloud, then GlideinWMS will continue
trying to contact the off-site resource and to gain more of those resources, until there are a fixed
number of idle jobs waiting and it is apparent that the resource is full. Since commercial clouds
have very large capacity and cost us for each machine we start, a different model is required.
 We have proposed a call-out architecture to enable the GlideinWMS Frontend to call
out to an external routine to determine whether it should request more glideins from the public
cloud or not. The goal of this routine will be to optimize the job placement based on expected
execution time as well as overall cost. In general if the local resources are full, and expected to
remain full for the length of time that it takes to launch virtual machines on AWS, then we
would launch VM’s on AWS. We may, however, wish to restrict AWS only to certain users.
 A number of other small improvements will be needed to the GlideinWMS system.
These include better support for AWS spot pricing, capacity to submit simultaneously to
multiple AWS regions and availability zones, selection of various resource types and AMI id’s.

3.3 On-Demand Services in the Commercial Cloud

 A number of auxiliary services may eventually be necessary in the public cloud. We
certainly need Squid for code caching via CVMFS. We may well need to have a temporary
storage element on the public cloud to aid in data caching inbound and outbound. We might
need to set up a CVMFS Stratum 1 server or a node that serves Alien Cache (an extension to
CVMFS that allows for serving large files that are not c

 We demonstrated the Squid service operation in the cloud previously, but it had to be
manually launched. It would be preferable to have a known service address that can be

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
4

Virtual Facility at Fermilab Steven Timm

 9

activated dynamically when it is needed and scale to the size that is needed. This functionality
can be done on Amazon Web Services using a combination of the Elastic Load Balancer, and
the Autoscaling group. The Autoscaling group requires one server to be up at all times,
however, so to truly launch the service on demand only as needed, an orchestration script such
as CloudFormation is necessary to launch the whole group of services. Squid servers are
basically stateless and thus are good candidates for scaling up and down.

 It is more challenging to scale a stateful service such as a job submission service up and
down, since these servers have locally stored log files from the jobs that have to be submitted,
that need to be accessible for some length of time. We demonstrated a scalable job submission
service on AWS by means of lifecycle hooks and the new “standby” state. Finally, it is possible
to create a failover alias that will attempt to contact the public cloud service first and fall back to
a service on site if it is not there. By these means it is possible to define a service set that spans
both public cloud and local site.

 Many if not most of the services mentioned on Amazon Web Services have counterparts
in open source cloud software such as OpenStack and OpenNebula as well as other public cloud
providers. Any mention of Amazon Web Services in this paper should not be interpreted to
exclude future collaboration with other commercial cloud providers.

 Following work that has been done at Brookhaven National Labs, we will also
configure the virtual machines on Amazon and the network routers on both ends to send
network traffic over the ESNET link.

4. Conclusion

 The Virtual Facility Project is using many of the long-standing tools of distributed
computing such as virtual machines, HTCondor, GlideinWMS, and Amazon Web Services.
What we bring is a new emphasis. We will ask the hard policy and architecture questions
needed to integrate the commercial cloud into the Facility. We will make full use of cloud
features and use the cloud like a cloud, not as an extension of the grid. We will explore
strategic partnerships with the commercial cloud vendors. We will do the hardest data-intensive
computing on the public cloud. We will unify grid and cloud provisioning activities into the
Facility, saving both system overhead and personnel for several Virtual Organizations.

Acknowledgements
This work is supported by the US Department of Energy under contract number DE-AC02- 07CH11359
and by KISTI under a joint Cooperative Research and Development Agreement. CRADA-FRA 2014-
0002/ KISTI-C14014

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
4

Virtual Facility at Fermilab Steven Timm

 10

References

[1] J. Blomer et al, Status and future perspectives of CernVM-FS J. Phys.: Conf. Ser. 396052013,
doi:10.1088/1742-6596/396/5/052013

[2] I. Gable et al, A batch system for HEP applications on a distributed IaaS cloud J. Phys.: Conf.
Ser. 331062010, doi:10.1088/1742-6596/331/6/062010

[3] Gable, Ian, et al. "Dynamic web cache publishing for IaaS clouds using Shoal." Journal of
Physics: Conference Series. Vol. 513. No. 3. IOP Publishing, 2014.

[4] Wu, Hao, et al. "Automatic cloud bursting under fermicloud." Parallel and Distributed Systems
(ICPADS), 2013 International Conference on. IEEE, 2013.

[5] Timm, S., et al. "Grids, virtualization, and clouds at Fermilab." Journal of Physics: Conference
Series. Vol. 513. No. 3. IOP Publishing, 2014.

File: predictiondecisionengine/trunk/bin/aws_launch_benchmark.sh !1
#!/bin/bash !2
. /home/crivella/bin/functions.sh !3
!4
#Check if needed packages are installed !5
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !6

echo "This script require aws-cli to run." !7
echo "Follow the instructions on https://aws.amazon.com/cli/ on how to get it" !8
exit !9

!10
fi !11
if [[`which nmap` = "" || `which nmap | grep -F "no nmap"` != ""]]; then !12

echo "This script require nmap to work. Install it by writing sudo apt-get install nmap" !13
echo "...Or the equivlaent command for your distribution" !14
exit !15

fi !16
!17
re='^[0-9]+$' !18
!19
#Edit this part with your data !20
#Where you have the run-*.sh files !21
FILES_PATH=$HOME/bin/Fermilab !22
#Where you stored your .pem keys !23
KEYS_PATH=$HOME/Fermilab/Keys !24
#where to keep the record of the machines you launched !25
TMP_PATH=$HOME/Fermilab/tmp !26
!27
#Your username !28
USER=grassano !29
#ID of the AMI you will be using !30
AMI_ID=ami-03dec833 !31
#Just the name with no .pem, or modify rest of the script !32
KEY=usw_oregon_grassano !33
#ID of the security group !34
SG_ID=sg-91d414f5 !35
#Not the same for every instance !36
SAME_INSTANCE_LIMIT=25 !37
#Bucket to get the benchmark files from !38

TEST_BUCKET=grassano-test !39
!40
#Benchmark that the script can run !41
declare -a benchmarks=(tt_bar_gensim tt_bar_reco hepspec06 s3_stresstest_d s3_stresstest_u 42
test_fermigrid test_fermigrid2) !…
#Volume to add with required size for the benchmark !43
declare -a req_vol_size=(80 80 50 0 3 3 3) !44
#Role !45
declare -a roles=("" "" "" "" AllowS3_Upload "") !46
declare -a parameters=("" "" "" "1 10 100" "1 10 100" "1 5 10 20" "1 5 10 20") !47
!48
#Check for registered user !49
USER_DATA=`aws iam get-user` !50
USER_ARN=`echo "$USER_DATA" | grep Arn | cut -d "\"" -f 4` !51
if [[-z "$USER_ARN"]]; then !52

echo "You don't appear to be registered to aws services. Exiting" !53
else !54

USER=`echo "$USER_DATA" | grep UserName | cut -d "\"" -f 4` !55
USER_ID=`echo "$USER_ARN" | cut -d ":" -f 5` !56
#echo $USER:$USER_ID !57

fi !58
!59
declare -a instances=(1:t2.micro) !60
RESUME_STATE="false" !61
ZONE="" !62
while getopts hra:s:k:i:p:z: opt; do !63
 case $opt in !64
 a) AMI_ID=$OPTARG !65
 ;; !66
 s) SG_ID=$OPTARG !67
 ;; !68
 k) KEY=$OPTARG !69
 ;; !70
 i) unset instances !71
 C_COUNT=0 !72
 for CMD in $OPTARG; do !73

if [[! `echo $CMD | cut -d ":" -f 1` =~ $re || `echo $CMD | grep ":" -o | wc -l` -gt 1 74
]]; then !…

echo "Invalid parameter for -i. Use the -h formore info." !75
exit !76

fi !77
instances[$C_COUNT]=$CMD !78
let C_COUNT++ !79

 done !80
!81

 ;; !82
 p) PARAM=$OPTARG !83
 ;; !84
 z) if [[`grep "profile $OPTARG" $HOME/.aws/config` != ""]]; then !85

ZONE="--profile $OPTARG" !86
else !87

echo "You don't have a profile to work with this zone. Exiting..." !88
exit !89

fi !90
 ;; !91
 r) RESUME_STATE="true" !92

if [["$OPTARG" != ""]]; then !93
echo "The -r does not take additional parameter. Use the -h for additional info" !94
exit !95

fi !96
 ;; !97
 h | \?) cat<<EOU !98
!99
Usage: $0 [-a AMI_ID] [-s Security_group_ID] [-k KEY_NAME] [-i instances] [-r] [-p parameters] 100
[z zone] !…
 -a AMI_ID ID of the AMI to use !101
 -s Security_group_ID ID of the security group to use !102
 -k KEY_NAME Specify the name of the key to use without .pem !103
 -i instances List of instances to start es: "3:m3.medium 2:c4.2xlarge" !104
 -p parameters Parameters to pass to the run-*.sh script as "..." !105
 -z zone Region to launch the instances in !106
 -r Enable resume mode !107
EOU !108
 exit !109
 ;; !110
 esac !111

done !112
!113
#Check if the selected AMI is available, if not give option to chose from list of owned 114
availabe AMIs !…
while [[`aws ec2 describe-images $ZONE --image-id $AMI_ID 2>&1 | grep "\"Name\":"` = ""]]; 115
do !…

echo "The specified ami does not exist. Do you wish to choose one from the ones you 116
own?(y/n)" !…

read_choice 5 "y" "n" "yes" "no" !117
if [[`echo $CHOICE | grep y` = ""]]; then !118

exit !119
else !120

IMAGES=`aws ec2 describe-images $ZONE --filters Name=state,Values=available --owners 121
$USER_ID` !…

IMAGES_NAME=`echo "$IMAGES" | grep "\"Name\":" | cut -d "\"" -f 4` !122
IMAGES_ID=`echo "$IMAGES" | grep "\"ImageId\":" | cut -d "\"" -f 4` !123
make_list "$IMAGES_NAME" !124
read_choice 5 `seq $LENGHT` !125
AMI_ID=`echo "$IMAGES_ID" | head -n $CHOICE | tail -n 1` !126
#echo $AMI_ID !127

fi !128
unset IMAGES !129
unset IMAGES_NAME !130
unset IMAGES_ID !131

done !132
!133
#Check if the chosen key is available and recognized by aws !134
while [[`find $KEYS_PATH -name "$KEY.pem"` = "" || `aws ec2 describe-key-pairs $ZONE | grep 135
$KEY` = ""]]; do !…

echo "You dont own the specified key or it is not recognized by amazon." !136
echo "Do you wish to choose it from the ones listed in aws that you own as well?(y/n)" !137
read_choice 5 "y" "n" "yes" "no" !138
if [[`echo $CHOICE | grep y` = ""]]; then !139

exit !140
else !141

KEYS=`find $KEYS_PATH -name "*.pem"` !142
KEYS_DATA=`aws ec2 describe-key-pairs $ZONE` !143
C_COUNT=0 !144

while read -r line; do !145
line=${line::-4} !146
FIELD=`echo $line | grep "/" -o | wc -l` !147
let FIELD++ !148
KEY=`echo $line | cut -d "/" -f $FIELD` !149
if [[`echo "$KEYS_DATA" | grep "$KEY"` != ""]]; then !150

KEY_LIST[$C_COUNT]="$KEY" !151
let C_COUNT++ !152

fi !153
done <<< "$KEYS" !154
if [[$C_COUNT -lt 1]]; then !155

echo "No matching key found. Exiting..." !156
exit !157

fi !158
make_list "${KEY_LIST[@]}" !159
read_choice 5 `seq $LENGHT` !160
let CHOICE-- !161
KEY="${KEY_LIST[$CHOICE]}" !162
#echo $KEY !163

fi !164
unset KEY_LIST !165
unset KEYS !166
unset KEYS_DATA !167

done !168
!169
##Check if the selected SG is available, if not give option to chose from list of availabe SGs !170
while [[`aws ec2 describe-security-groups $ZONE --group-ids $SG_ID 2>&1 | grep 171
"\"GroupId\":"` = ""]]; do !…

echo "The specified security group does not exist.Do you wish to chose one frome those 172
available on aws?(y/n)" !…

read_choice 5 "y" "n" "yes" "no" !173
if [[`echo $CHOICE | grep y` = ""]]; then !174

exit !175
else !176

SGS=`aws ec2 describe-security-groups $ZONE` !177
SGS_NAME=`echo "$SGS" | grep "\"GroupName\":" | cut -d "\"" -f 4` !178
#echo "$SGS_NAME" !179
SGS_ID=`echo "$SGS" | grep "\"GroupId\":" | cut -d "\"" -f 4` !180

make_list "$SGS_NAME" !181
read_choice 5 `seq $LENGHT` !182
SG_ID=`echo "$SGS_ID" | head -n $CHOICE | tail -n 1` !183
#echo $SG_ID !184

fi !185
unset SGS !186
unset SGS_NAME !187
unset SGS_ID !188

done !189
!190
mkdir -p $TMP_PATH/launch_logs !191
!192
echo "Chose the kind of benchmarks to execute:" !193
!194
make_list "${benchmarks[@]}" !195
read_choice 5 `seq $LENGHT` !196
let CHOICE-- !197
!198
benchmark=${benchmarks[$CHOICE]} !199
vol_size=${req_vol_size[$CHOICE]} !200
!201
if [[-z "$PARAM"]]; then !202

PARAM=${parameters[$CHOICE]} !203
fi !204
!205
if [[$vol_size -eq 0]]; then !206

vol_size=3 !207
for CMD in ${PARAM[@]}; do !208

let vol_size+=$CMD !209
done !210

fi !211
!212
#If a role is associated with the benchmark, enable it for the run-instances command !213
if [["${roles[$CHOICE]}" = ""]]; then !214

ROLE="AllowS3_Download" !215
else !216

ROLE="${roles[$CHOICE]}" !217
fi !218

!219
ROLE="--iam-instance-profile Name=\"$ROLE\"" !220
!221
#echo "$benchmark:$vol_size:$ROLE" !222
#echo "${instances[@]}" !223
!224
##225
############### !…
#Check if the TEST_BUCKET in s3 contains a folder !226
#This script wont work if all the require files aren't in an s3 bucket in a folder with the 227
Name set as the benchmark name !…
#Exception for s3_stresstest_d/u and test_fermigrid that go with the same foder s3_stresstest !228
!229
if [[`echo $benchmark | grep s3_stresstest` != "" || `echo "$benchmark" | grep 230
"test_fermigrid"` != ""]]; then !…

a_benchmark="s3_stresstest" !231
else !232

a_benchmark=$benchmark !233
fi !234
!235
if ["`aws s3api list-objects --bucket $TEST_BUCKET | grep $a_benchmark`" = ""]; then !236

echo "Can't find the right folder in s3. Quitting..." !237
exit !238

fi !239
!240
#echo -e "$instances\n$PARAM\n$benchmark:$vol_size" !241
#exit !242
!243
##244
############### !…
#Create folder to store the VMS data + Resume work option !245
COUNT2=0 !246
RESUME=0 !247
RES_STEP=0 !248
mkdir -p $TMP_PATH/$benchmark !249
if $RESUME_STATE; then !250

if [[! ${#instances[@]} -eq 1]]; then !251
echo "The resume functionality works only with one kind of instances and benchmark." !252

exit !253
fi !254
if [[! -f $TMP_PATH/$benchmark/VMS]]; then !255

echo "Tmp file not found. Exiting..." !256
exit !257

fi !258
while read -r line; do !259

if [["$line" != ""]]; then !260
I_CHECK=`echo ${instances[0]} | cut -d ":" -f 2` !261
I_TYPES[$COUNT2]=`echo "$line" | cut -d ":" -f 2` !262
if [["${I_TYPES[$COUNT2]}" != "$I_CHECK"]]; then !263

echo "The specified instance type does not match the ones in the tmp file. 264
Can't use the resume functionality" !…

exit !265
fi !266
VM_IDS[$COUNT2]=`echo "$line" | cut -d ":" -f 3` !267
let COUNT2++ !268
let RESUME++ !269

fi !270
done < $TMP_PATH/$benchmark/VMS !271

!272
for ((COUNT=0;COUNT<COUNT2;COUNT++)); do !273

INSTANCE_DATA=`aws ec2 describe-instances $ZONE --instance-ids ${VM_IDS[$COUNT]}` !274
VM_AVAL[$COUNT]=`echo "$INSTANCE_DATA" | grep -F "AvailabilityZone" | cut -d "\"" -f 275

4` !…
VM_PUB_DNS[$COUNT]=`echo "$INSTANCE_DATA" | grep PublicDnsName | cut -d "\"" -f 4 | 276

uniq` !…
ssh -o "StrictHostKeyChecking no" -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} 277

"rm -f -r /scratch/*">/dev/null 2>&1 & !…
if [[`echo "$INSTANCE_DATA" | grep running` = ""]]; then !278

echo "One or more of the instances described in the tmp file do not exist anymore 279
or are not running." !…

echo "Can't continue with the resume functionality" !280
exit !281

fi !282
done !283
unset INSTANCE_DATA !284

!285

step="Volume creation !286
Start Benchmark" !287

echo "Select the step from which you want to resume the work for the machine stored in 288
tmp:" !…

make_list "$step" !289
read_choice 3 `seq $LENGHT` !290
RES_STEP=$CHOICE !291
unset step !292

else !293
rm -f $TMP_PATH/$benchmark/VMS !294
touch $TMP_PATH/$benchmark/VMS !295

fi !296
!297
##298
############### !…
#Starting the required VM !299
STEP=0 !300
for ((COUNT=0;COUNT<${#instances[@]};COUNT++)); do !301

I_NUM=`echo "${instances[$COUNT]}" | cut -d ":" -f 1` !302
I_TYPE=`echo "${instances[$COUNT]}" | cut -d ":" -f 2` !303

!304
if [[$RESUME -gt 0]]; then !305

let I_NUM-=$RESUME !306
I_COUNT=$(expr $RESUME + 1) !307

else !308
I_COUNT=1 !309

fi !310
if [[$I_NUM -gt $SAME_INSTANCE_LIMIT]]; then !311

echo "The number ($I_NUM) specified for instance $I_TYPE exceeds the limit of 312
$SAME_INSTANCE_LIMIT." !…

echo "Bringing it down to the maximun allowed..." !313
I_NUM=$SAME_INSTANCE_LIMIT !314

fi !315
!316

if [[$I_NUM -gt 0]]; then !317
echo "Launching $I_NUM $I_TYPE instances" !318
INSTANCE_DATA=`aws ec2 run-instances $ZONE --count $I_NUM --image-id $AMI_ID 319

--instance-type $I_TYPE --security-group-ids $SG_ID --key-name $KEY $ROLE` !…

fi !320
!321

L_COUNT=1 !322
while [[$L_COUNT -le $I_NUM]]; do !323

I_TYPES[$COUNT2]=$I_TYPE !324
INSTANCE_ID=`echo "$INSTANCE_DATA" | grep -F "InstanceId" | head -n $L_COUNT | tail -n 325

1 | cut -d "\"" -f 4` !…
VM_IDS[$COUNT2]=$INSTANCE_ID !326
AVAL=`echo "$INSTANCE_DATA" | grep -F "AvailabilityZone" | head -n $L_COUNT | tail -n 327

1 | cut -d "\"" -f 4` !…
VM_AVAL[$COUNT2]=$AVAL !328
aws ec2 create-tags $ZONE --resources $INSTANCE_ID --tags 329

Key=Name,Value=$USER-$I_TYPE-$benchmark-`printf %03d $I_COUNT` Key=User,Value=$USER>/dev/null !…
let I_COUNT++ !330
let L_COUNT++ !331
let COUNT2++ !332

done !333
done !334
LAST_INSTANCE=$(expr $COUNT2 - 1) !335
!336
##337
############### !…
#Get the public DNS after they are available !338
echo "Waiting for the DNS..." !339
while [[`aws ec2 describe-instances $ZONE --instance-ids ${VM_IDS[$LAST_INSTANCE]}| grep -F 340
"PublicDnsName" | cut -d "\"" -f 4 | uniq` = ""]]; do !…

sleep 10 !341
done !342
sleep 5 !343
!344
#echo "$RESUME:${#VM_IDS[@]}" !345
!346
for ((COUNT=$RESUME;COUNT<${#VM_IDS[@]};COUNT++)); do !347

INSTANCE_DATA=`aws ec2 describe-instances $ZONE --instance-ids ${VM_IDS[$COUNT]}` !348
PUB_DNS=`echo "$INSTANCE_DATA" | grep -F "PublicDnsName" | cut -d "\"" -f 4 | uniq` !349
#Print VMS data in tmp file !350
echo "$COUNT:${I_TYPES[$COUNT]}:${VM_IDS[$COUNT]}:$PUB_DNS:$KEY" >> 351

$TMP_PATH/$benchmark/VMS !…

VM_PUB_DNS[$COUNT]=$PUB_DNS !352
done !353
!354
##355
############### !…
#Create extra volumes !356
let STEP++ !357
if [[$STEP -ge $RES_STEP]]; then !358

RES_VAL=0 !359
else !360

RES_VAL=$RESUME !361
I_COUNT=$(expr $RESUME + 1) !362

fi !363
!364
for ((COUNT=$RES_VAL;COUNT<${#VM_IDS[@]};COUNT++)); do !365

if [["${I_TYPES[$COUNT]}" = "${I_TYPES[$(expr $COUNT - 1)]}" && $COUNT -gt $RES_VAL]]; 366
then !…

let I_COUNT++ !367
else !368

I_COUNT=$(expr $RES_VAL + 1) !369
fi !370
echo "Creating extradisk for instance ${I_TYPES[$COUNT]}-`printf %03d $I_COUNT`" !371
VOLUME_DATA=`aws ec2 create-volume $ZONE --size $vol_size --availability-zone 372

${VM_AVAL[$COUNT]} --volume-type gp2` !…
VOLUME_ID[$COUNT]=`echo "$VOLUME_DATA" | grep -F "VolumeId" | cut -d "\"" -f 4` !373

done !374
!375
##376
############### !…
#Wait until all VM are done initialazing !377
echo "Waiting for the instances to be initialized..." !378
for ((COUNT=$RES_VAL;COUNT<${#VM_IDS[@]};COUNT++)); do !379

while [[`nmap -p 22 ${VM_PUB_DNS[$COUNT]} | grep open` = ""]]; do !380
sleep 15 !381

done !382
done !383
!384
!385

##386
############### !…
#Disable the self-stop service and register the connection to the DNS (won't ask yes/no 387
afterwards) !…
for ((COUNT=0;COUNT<${#VM_IDS[@]};COUNT++)); do !388

ssh -o "StrictHostKeyChecking no" -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} 389
"service glideinwms-pilot stop">/dev/null !…

#echo "Stopped service in instance ${instances[$COUNT]}." !390
done !391
sleep 3 !392
!393
##394
############### !…
#Waiting for volumes to create !395
echo "Waiting for volumes to create..." !396
for ((COUNT=$RES_VAL;COUNT<${#VM_IDS[@]};COUNT++)); do !397

while [[`aws ec2 describe-volumes $ZONE --volume-ids ${VOLUME_ID[$COUNT]} | grep 398
available` = ""]]; do !…

#echo "Waiting for disk to create..." !399
sleep 5 !400

done !401
if [["${I_TYPES[$COUNT]}" = "${I_TYPES[$(expr $COUNT - 1)]}" && $COUNT -gt $RES_VAL]]; 402

then !…
let I_COUNT++ !403

else !404
I_COUNT=$(expr $RES_VAL + 1) !405

fi !406
aws ec2 create-tags $ZONE --resources ${VOLUME_ID[$COUNT]} --tags 407

Key=Name,Value=$USER-${I_TYPES[$COUNT]}-$benchmark-`printf %03d $I_COUNT` …
Key=user,Value=$USER>/dev/null !…
done !408
!409
##410
############### !…
#Attaching Volumes !411
echo "Attaching Volumes..." !412
for ((COUNT=$RES_VAL;COUNT<${#VM_IDS[@]};COUNT++)); do !413

aws ec2 attach-volume $ZONE --volume-id ${VOLUME_ID[$COUNT]} --instance-id 414

${VM_IDS[$COUNT]} --device /dev/sdf>/dev/null !414…
done !415
!416
##417
############### !…
#Waiting for volumes to attach !418
echo "Waiting for volumes to attach and making filesystem..." !419
for ((COUNT=$RES_VAL;COUNT<${#VM_IDS[@]};COUNT++)); do !420

while [[`aws ec2 describe-volumes $ZONE --volume-ids ${VOLUME_ID[$COUNT]} | grep 421
attaching` != ""]]; do !…

sleep 3 !422
done !423
if [["${I_TYPES[$COUNT]}" = "${I_TYPES[$(expr $COUNT - 1)]}" && $COUNT -gt $RES_VAL]]; 424

then !…
let I_COUNT++ !425

else !426
I_COUNT=$(expr $RES_VAL + 1) !427

fi !428
echo "Making file system ext4 for ${I_TYPES[$COUNT]}-$I_COUNT..." !429
ssh -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} "mkfs.ext4 /dev/xvdf 430

2>/dev/null">/dev/null & !…
done !431
wait !432
!433
##434
############### !…
#Start the benchmark !435
let STEP++ !436
if [[$STEP -ge $RES_STEP]]; then !437

RES_VAL=0 !438
else !439

RES_VAL=$RESUME !440
fi !441
echo "Starting the benchmark on every instance..." !442
TIME=`date +%R` !443
for ((COUNT=$RES_VAL;COUNT<${#VM_IDS[@]};COUNT++)); do !444

scp -i $KEYS_PATH/$KEY.pem $FILES_PATH/run-$benchmark.sh 445
root@${VM_PUB_DNS[$COUNT]}:/root/>/dev/null 2>&1 !…

ssh -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} "chmod 755 /root/run-$benchmark.sh" 446
>/dev/null 2>&1 !…

echo 447
"###…
###################################" >>$TMP_PATH/launch_logs/run_error_`printf %03d …
$COUNT`.log !…

echo "`date` ${VM_IDS[$COUNT]}:${I_TYPES[$COUNT]}:$benchmark" 448
>>$TMP_PATH/launch_logs/run_error_`printf %03d $COUNT`.log !…

ssh -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} "/root/run-$benchmark.sh $TIME 449
$COUNT $PARAM">/dev/null 2>>$TMP_PATH/launch_logs/run_error_`printf %03d $COUNT`.log 2>&1 & !…
done !450
!451
echo "I'm done. Wait for the benchmark to be over and than launch the crop_results.sh script." !452
!453
exit !454
!455
!456
!457
----------- !458
----------- !459
----------- !460
!461
!462
File: predictiondecisionengine/trunk/bin/aws_login.sh !463
#!/bin/bash !464
. /home/crivella/bin/functions.sh !465
!466
while getopts hz: opt; do !467
 case $opt in !468
 z) if [[`grep "profile $OPTARG" $HOME/.aws/config` != ""]]; then !469

ZONE="--profile $OPTARG" !470
else !471

echo "You don't have a profile to work with this zone. Exiting..." !472
exit !473

fi !474
 ;; !475
 h | \?) cat<<EOU !476
!477

Usage: $0 [z zone] !478
 -z zone Region to launch the instances in !479
EOU !480
 exit !481
 ;; !482
 esac !483
done !484
!485
FILES_PATH=/home/crivella/bin/Fermilab !486
KEYS_PATH=/home/crivella/Fermilab !487
USER= !488
!489
#Check for registered user !490
USER_DATA=`aws iam get-user` !491
USER_ARN=`echo "$USER_DATA" | grep Arn | cut -d "\"" -f 4` !492
if [[-z "$USER_ARN"]]; then !493

echo "You don't appear to be registered to aws services. Exiting" !494
else !495

USER=`echo "$USER_DATA" | grep UserName | cut -d "\"" -f 4` !496
USER_ID=`echo "$USER_ARN" | cut -d ":" -f 5` !497
#echo $USER:$USER_ID !498

fi !499
!500
VMS_DATA=`aws ec2 describe-instances $ZONE --filters Name=tag-value,Values=$USER 501
Name=instance-state-name,Values=running` !…
if [[`echo "$VMS_DATA" | grep $USER` = ""]]; then !502

echo "No running instances found for user $USER. Quitting script..." !503
exit !504

fi !505
!506
VMS=`echo "$VMS_DATA" | grep -F "$USER-" | cut -d "\"" -f 4` !507
A_VMS=($(list_to_array "$VMS")) !508
unset VMS !509
VMS_KEYS=`echo "$VMS_DATA" | grep -F "_$USER" | cut -d "\"" -f 4` !510
A_VMS_KEYS=($(list_to_array "$VMS_KEYS")) !511
unset VMS_KEYS !512
VMS_PUB_DNS=`echo "$VMS_DATA" | grep -F "PublicDnsName" | cut -d "\"" -f 4 | uniq` !513
A_VMS_PUB_DNS=($(list_to_array "$VMS_PUB_DNS")) !514

unset VMS_PUB_DNS !515
!516
#Sort the VMs by name while also doing the same operation on the VMS_KEYS and VMS_PUB_DNS 517
arrays !…
for ((i=0;i<${#A_VMS[@]}-1;i++)); do !518

for ((j=i+1;j<${#A_VMS[@]};j++)); do !519
if [["${A_VMS[$i]}" > "${A_VMS[$j]}"]]; then !520

APP=${A_VMS[$i]} !521
A_VMS[$i]=${A_VMS[$j]} !522
A_VMS[$j]=$APP !523
APP=${A_VMS_KEYS[$i]} !524
A_VMS_KEYS[$i]=${A_VMS_KEYS[$j]} !525
A_VMS_KEYS[$j]=$APP !526
APP=${A_VMS_PUB_DNS[$i]} !527
A_VMS_PUB_DNS[$i]=${A_VMS_PUB_DNS[$j]} !528
A_VMS_PUB_DNS[$j]=$APP !529

fi !530
done !531

done !532
!533
make_list "${A_VMS[@]}" !534
read_choice 5 `seq $LENGHT` !535
let CHOICE-- !536
!537
VM=${A_VMS[$CHOICE]} !538
VM_DNS=${A_VMS_PUB_DNS[$CHOICE]} !539
VM_KEY=${A_VMS_KEYS[$CHOICE]} !540
!541
KEY=`find $KEYS_PATH -name "$VM_KEY.pem"` !542
if ["$KEY" = ""]; then !543

echo "You do not have the necessary key. Terminating..." !544
exit !545

fi !546
!547
: ' !548
echo "Do you want to copy the files?[y/n]: " !549
read ANSWER !550
if [[$ANSWER = "y"]]; then !551

scp -i $KEY $FILES_PATH/runttbar.sh root@$VM_DNS:/root/ !552
scp -i $KEY $FILES_PATH/res_show.sh root@$VM_DNS:/root/ !553
scp -i $KEY $FILES_PATH/runhepspec.sh root@$VM_DNS:/root/ !554
#scp -i $KEY $FILES_PATH/runparallel.sh root@$VM_DNS:/root/ !555

fi' !556
!557
ssh -i $KEY root@$VM_DNS !558
!559
----------- !560
----------- !561
----------- !562
!563
!564
File: predictiondecisionengine/trunk/bin/crop_results.sh !565
#!/bin/bash !566
. /home/crivella/bin/functions.sh !567
!568
!569
#Check if needed packages are installed !570
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !571

echo "This script require aws-cli to run." !572
echo "Follow the instructions on https://aws.amazon.com/cli/ on how to get it" !573
exit !574

!575
fi !576
if [[`which nmap` = "" || `which nmap | grep -F "no nmap"` != ""]]; then !577

echo "This script require nmap to work. Install it by writing sudo apt-get install nmap" !578
echo "...Or the equivlaent command for your distribution" !579
exit !580

fi !581
!582
#Edit this part with your data !583
#Path where you wish to store the results of the benchmarks !584
B_PATH=/home/crivella/Fermilab/Benchmarks !585
#Your username !586
USER=grassano !587
#Where you have the .sh files !588
FILES_PATH=/home/crivella/bin/Fermilab !589

#Where you stored your .pem keys !590
KEYS_PATH=/home/crivella/Fermilab/Keys !591
#They name of the key you used without the .pem !592
KEY=usw_oregon_grassano !593
#where to keep the record of the machines you launched !594
TMP_PATH=/home/crivella/Fermilab/tmp !595
!596
while getopts hk:z: opt; do !597
 case $opt in !598
 z) if [[`grep "profile $OPTARG" $HOME/.aws/config` != ""]]; then !599

ZONE="--profile $OPTARG" !600
else !601

echo "You don't have a profile to work with this zone. Exiting..." !602
exit !603

fi !604
 ;; !605
 k) KEY=$OPTARG !606
 ;; !607
 h | \?) cat<<EOU !608
!609
Usage: $0 [-k KEY_NAME] [z zone] !610
 -k KEY_NAME Specify the name of the key to use without .pem !611
 -z zone Region to launch the instances in !612
EOU !613
 exit !614
 ;; !615
 esac !616
done !617
!618
declare -a benchmarks=(tt_bar_gensim tt_bar_reco hepspec06 s3_stresstest_d s3_stresstest_u 619
test_fermigrid test_fermigrid2) !…
!620
echo "Chose the kind of benchmarks to crop the results for:" !621
!622
make_list "${benchmarks[@]}" !623
read_choice 5 `seq $LENGHT` !624
let CHOICE-- !625
!626

benchmark=${benchmarks[$CHOICE]} !627
mkdir -p $B_PATH/$benchmark !628
!629
if [[-d $TMP_PATH/$benchmark]]; then !630

echo "I've found a tmp folder for the benchmark. Do you wish to use VM data from here?(y)" !631
echo "... Or do yo wish to query amazon for active VMS? (n)" !632
read_choice 5 "y" "n" "yes" "no" !633
FLAG=1 !634

fi !635
!636
if [["$CHOICE" != "n" && FLAG -eq 1]]; then !637

while read -r line; do !638
POS=`echo "$line" | cut -d ":" -f 1` !639
VMS[$POS]="`echo "$line" | cut -d ":" -f 2`" !640
VM_IDS[$POS]="`echo "$line" | cut -d ":" -f 3`" !641
VM_PUB_DNS[$POS]="`echo "$line" | cut -d ":" -f 4`" !642
VM_KEYS[$POS]="`echo "$line" | cut -d ":" -f 5`" !643

done < $TMP_PATH/$benchmark/VMS !644
else !645

#Adjust this section with your own format used to name instances and keys############ !646
VMS_DATA=`aws ec2 describe-instances $ZONE --filters Name=tag-value,Values=$USER` !647
VMS_NAME=`echo "$VMS_DATA" | grep -F "$USER-" | cut -d "\"" -f 4` !648
PUB_DNS=`echo "$VMS_DATA" | grep -F "PublicDnsName" | cut -d "\"" -f 4 | uniq` !649
VMS_KEYS=`echo "$VMS_DATA" | grep -F "_$USER" | cut -d "\"" -f 4` !650
!651

!652
VM_PUB_DNS=($(list_to_array "$PUB_DNS")) !653
VMS=($(list_to_array "$VMS_NAME")) !654
VM_KEYS=($(list_to_array "$VMS_KEYS")) !655
unset VMS_DATA !656
unset PUB_DNS !657
unset VMS_KEYS !658

fi !659
!660
if [["${VM_PUB_DNS[0]}" = ""]]; then !661

echo "No results found..." !662
exit !663

fi !664

!665
: ' !666
for ((COUNT=0;COUNT<${#VM_PUB_DNS[@]};COUNT++)); do !667

echo "$COUNT" !668
echo "${VMS[$COUNT]}" !669
echo "${VM_IDS[$COUNT]}" !670
echo "${VM_PUB_DNS[$COUNT]}" !671

done !672
exit' !673
!674
if [["$benchmark" = "tt_bar_reco" || "$benchmark" = "tt_bar_gensim"]]; then !675
cat <<CROP > crop.sh !676
#!/bin/bash !677
!678
cd /tmp/cms !679
FOLDERS=\`ls | grep results | grep -v .txt | grep -v .sh\` !680
!681
for CMD in \$FOLDERS; do !682

if [[-e check_results.sh]]; then !683
sh check_results.sh > $CMD.txt !684

else !685
cd \$CMD !686
sh ../check_results_gensim.sh > ../\$CMD.txt !687
cd .. !688

fi !689
done !690
exit !691
CROP !692
fi !693
!694
for ((COUNT=0;COUNT<${#VM_PUB_DNS[@]};COUNT++)); do !695

if [[((`echo "$benchmark" | grep "s3_stresstest"` = "" && `echo "$benchmark" | grep 696
"test_fermigrid"` = "") || $COUNT -eq 0) || ((`echo "$benchmark" | grep "s3_stresstest"` != "" …
|| `echo "$benchmark" | grep "test_fermigrid"` != "") && $COUNT -gt 0 && "${VMS[$COUNT]}" != …
"${VMS[$(expr $COUNT - 1)]}")]]; then !…

F_PATH="$B_PATH/$benchmark/${VMS[$COUNT]}" !697
A_PATH=$F_PATH !698
C_COUNT=0 !699

while (! mkdir $A_PATH 2>/dev/null); do !700
let C_COUNT++ !701
A_PATH=$F_PATH.run`printf %03d $C_COUNT` !702

done !703
F_PATH=$A_PATH !704

fi !705
#echo $F_PATH !706
if [[("$benchmark" = "tt_bar_reco" || "$benchmark" = "tt_bar_gensim") && $CHECK -eq 0]]; 707

then !…
scp -i $KEYS_PATH/${VM_KEYS[$COUNT]}.pem crop.sh 708

root@${VM_PUB_DNS[$COUNT]}:/root/>/dev/null !…
ssh -i $KEYS_PATH/${VM_KEYS[$COUNT]}.pem root@${VM_PUB_DNS[$COUNT]} "sh 709

/root/crop.sh">/dev/null !…
#ssh -i $KEYS_PATH/${VM_KEYS[$COUNT]}.pem root@${VM_PUB_DNS[$COUNT]} "rm 710

/root/crop.sh">/dev/null !…
scp -i $KEYS_PATH/${VM_KEYS[$COUNT]}.pem 711

root@${VM_PUB_DNS[$COUNT]}:/tmp/cms/results*txt $F_PATH>/dev/null !…
elif [["$benchmark" = "hepspec06"]]; then !712

#rm -f crop.sh !713
scp -i $KEYS_PATH/${VM_KEYS[$COUNT]}.pem -r 714

root@${VM_PUB_DNS[$COUNT]}:/scratch/install/results/* $F_PATH !…
#scp -r root@${VM_PUB_DNS[$COUNT]}:/scratch/new_hepspec2006/install/results/* $F_PATH !715
#exit !716
RESULTS=`find $F_PATH -name "lock.CPU2006" | sort` !717
if [["$RESULTS" = ""]]; then !718

echo "The results folder is empty..." !719
exit !720

fi !721
while read -r CMD; do !722

RES_PATH=`dirname $CMD` !723
N_CORE=`find $RES_PATH -name "CPU2006*.log" | wc -l` !724
for COUNT in `seq $N_CORE`; do !725

if [$COUNT -eq 1]; then !726
echo "CORE$COUNT" > $RES_PATH/crop_core.txt !727

else !728
echo -e "\nCORE$COUNT" >> $RES_PATH/crop_core.txt !729

fi !730
cat $RES_PATH/CFP2006.`printf %03d $COUNT`.ref.txt | grep -F " *" | sort | 731

uniq >> $RES_PATH/crop_core.txt !731…
cat $RES_PATH/CINT2006.`printf %03d $COUNT`.ref.txt | grep -F " *" | sort | 732

uniq >> $RES_PATH/crop_core.txt !…
done !733

done <<< "$RESULTS" !734
elif [[`echo "$benchmark" | grep "s3_stresstest"` != "" || `echo "$benchmark" | grep 735

"test_fermigrid"` != ""]]; then !…
rm -f crop.sh !736
if [["${VMS[$COUNT]}" = "${VMS[$(expr $COUNT - 1)]}" && $COUNT -gt 0]]; then !737

let I_COUNT++ !738
else !739

I_COUNT=1 !740
fi !741
if [[`echo "$benchmark" | grep "test_fermigrid"` != ""]]; then !742

scp -i $KEYS_PATH/${VM_KEYS[$COUNT]}.pem 743
root@${VM_PUB_DNS[$COUNT]}:/scratch/fermigrid_upload.log $F_PATH/${VMS[$COUNT]}-$I_COUNT.log !…

scp -i $KEYS_PATH/${VM_KEYS[$COUNT]}.pem 744
root@${VM_PUB_DNS[$COUNT]}:/scratch/command.log $F_PATH/command-$I_COUNT.log !…

else !745
scp -i $KEYS_PATH/${VM_KEYS[$COUNT]}.pem 746

root@${VM_PUB_DNS[$COUNT]}:/scratch/s3_stress.log $F_PATH/${VMS[$COUNT]}-$I_COUNT.log !…
fi !747
RESULTS="$F_PATH/${VMS[$COUNT]}-$I_COUNT.log" !748
while read -r CMD; do !749

RES_PATH=`dirname $CMD` !750
string=`cat $CMD | grep -F ":"` !751
#echo "$string" !752
C_COUNT=0 !753
string2=`cat $CMD | grep -F "Simultaneous" | cut -d " " -f 4` !754
#echo "$string2" !755
N_COUNT=0 !756
while read -r APP; do !757

NUM[$N_COUNT]=$APP !758
let N_COUNT++ !759

done <<< "$string2" !760
string2=`cat $CMD | grep -F "out of" | cut -d " " -f 1` !761
#echo "$string2" !762
N_COUNT=0 !763

while read -r APP; do !764
SUCC_NUM[$N_COUNT]=$APP !765
let N_COUNT++ !766

done <<< "$string2" !767
N_COUNT=0 !768
echo "$CMD" >> $RES_PATH/diff.log !769
while read -r line; do !770

A_HOURS[$C_COUNT]=`echo "$line" | cut -d ":" -f 1` !771
A_HOURS[$C_COUNT]=${A_HOURS[$C_COUNT]: -2} !772
A_MIN[$C_COUNT]=`echo "$line" | cut -d ":" -f 2` !773
A_MIN[$C_COUNT]=${A_MIN[$C_COUNT]: -2} !774
A_SEC[$C_COUNT]=`echo "$line" | cut -d ":" -f 3` !775
#echo ${A_SEC[$C_COUNT]} !776
A_SEC[$C_COUNT]=${A_SEC[$C_COUNT]::2} !777
#echo ${A_SEC[$C_COUNT]} !778
let C_COUNT++ !779
if [[$C_COUNT -ge 2]]; then !780

H_DIFF=$(expr ${A_HOURS[1]} - ${A_HOURS[0]}) !781
M_DIFF=$(expr ${A_MIN[1]} - ${A_MIN[0]}) !782
S_DIFF=$(expr ${A_SEC[1]} - ${A_SEC[0]}) !783
T_DIFF=`echo "$H_DIFF*3600+$M_DIFF*60+$S_DIFF" | bc` !784
if [["${NUM[$N_COUNT]}" = ""]]; then !785

NUM[$N_COUNT]=${NUM[$(($N_COUNT-1))]} !786
fi !787
RATIO="`echo "${NUM[$N_COUNT]}/$T_DIFF" | bc -l`" !788
RATIO=${RATIO::4} !789
echo -ne "Diff for ${NUM[$N_COUNT]} is\t\t$T_DIFF in seconds\t\t$RATIO 790

GB/s\t ${SUCC_NUM[$N_COUNT]} out of ${NUM[$N_COUNT]} up/downloads succeded" >> …
$RES_PATH/diff.log !…

if [[${SUCC_NUM[$N_COUNT]} -lt ${NUM[$N_COUNT]}]]; then !791
echo "<<<<<<<<<<<<<<<<<<<<<<<<<" >> $RES_PATH/diff.log !792

else !793
echo "" >> $RES_PATH/diff.log !794

fi !795
let N_COUNT++ !796
C_COUNT=0 !797

fi !798
done <<< "$string" !799

echo -e "\n" >> $RES_PATH/diff.log !800
done <<< "$RESULTS" !801

fi !802
done !803
!804
#rm -f crop.sh !805
exit !806
${NUM[$N_COUNT]} !807
!808
----------- !809
----------- !810
----------- !811
!812
!813
File: predictiondecisionengine/trunk/bin/fc_login.sh !814
#!/bin/bash !815
!816
M_LOGIN_PATH=/home/crivella/bin/Fermilab !817
USER=grassano !818
!819
!820
echo "Are you already logged into kinit[y/n]: " !821
read ANSWER !822
if [[$ANSWER = "n"]]; then !823
 kinit $USER@FNAL.GOV !824
fi !825
!826
!827
echo "Do you want to copy m_login?[y/n]: " !828
read ANSWER !829
if [[$ANSWER = "y"]]; then !830
 scp $M_LOGIN_PATH/m_login.sh $USER@fcluigpvm01.fnal.gov:/cloud/login/$USER/ !831
fi !832
!833

!834
ssh -l $USER fcluigpvm01.fnal.gov !835
!836
----------- !837

----------- !838
----------- !839
!840
!841
File: predictiondecisionengine/trunk/bin/Fermilab/From_EBS/aws_launch_benchmark.sh !842
#!/bin/bash !843
!844
#Description: Read the choice to a query and confront it with a list of correct answer 845
limiting the numbers of checks !…
#Parameters: 1st parameter: number of attempts possible other parameter:List of correct 846
answers !…
function read_choice() !847
{ !848

local NUM=$1 !849
shift !850
CHOICES=("${@}") !851
while "true"; do !852

read CHOICE !853
CHOICE=`echo $CHOICE | tr YESNO yesno` !854
for CMD in ${CHOICES[@]}; do !855

if [["$CHOICE" = "$CMD"]]; then !856
return 0 !857

fi !858
done !859
echo "Choice is out of range. Enter again :" !860
let C_COUNT++ !861
if [[$C_COUNT -ge $NUM]]; then !862

echo "$NUM invalid choices. Exiting..." !863
exit !864

fi !865
done !866

} !867
!868
#Description: Make a numbered list out of an array or list of elements and return the number 869
of elements in LENGHT !…
#Parameters: array or list of elements !870
function make_list() !871
{ !872

local C_COUNT=0 !873
if [[`echo "$1" | wc -l` -gt 1]]; then !874

echo Lista !875
while read -r line; do !876

let C_COUNT++ !877
echo -e "$C_COUNT-\t$line" !878

done <<< "$1" !879
else !880

local array=("$@") !881
for CMD in ${array[@]}; do !882

let C_COUNT++ !883
echo -e "$C_COUNT-\t$CMD" !884

done !885
fi !886
LENGHT=$C_COUNT !887

} !888
!889
#Check if needed packages are installed !890
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !891

echo "This script require aws-cli to run." !892
echo "Follow the instructions on https://aws.amazon.com/cli/ on how to get it" !893
exit !894

!895
fi !896
if [[`which nmap` = "" || `which nmap | grep -F "no nmap"` != ""]]; then !897

echo "This script require nmap to work. Install it by writing sudo apt-get install nmap" !898
echo "...Or the equivlaent command for your distribution" !899
exit !900

fi !901
!902
re='^[0-9]+$' !903
!904
#Edit this part with your data !905
#Where you have the run-*.sh files !906
FILES_PATH=$HOME/bin/Fermilab !907
#Where you stored your .pem keys !908
KEYS_PATH=$HOME/Fermilab/Keys !909
#where to keep the record of the machines you launched !910

TMP_PATH=$HOME/Fermilab/tmp !911
!912
#Your username !913
USER=grassano !914
#ID of the AMI you will be using !915
AMI_ID=ami-03dec833 !916
#Just the name with no .pem, or modify rest of the script !917
KEY=usw_oregon_grassano !918
#ID of the security group !919
SG_ID=sg-91d414f5 !920
#Not the same for every instance !921
SAME_INSTANCE_LIMIT=25 !922
!923
#Benchmark that the script can run !924
declare -a benchmarks=(tt_bar_gensim tt_bar_reco hepspec06 s3_stresstest_d s3_stresstest_u 925
test_fermigrid) !…
#Volume to add with required size for the benchmark !926
declare -a req_vol_size=(80 80 50 120 3 3) !927
#Role related profile !928
declare -a profiles=("" "" "" AllowS3_Download AllowS3_Upload "AllowS3_Download") !929
declare -a parameters=("" "" "" "1 10 100" "1 10 100" "1 5 10 20") !930
!931
#Check for registered user !932
USER_DATA=`aws iam get-user` !933
USER_ARN=`echo "$USER_DATA" | grep Arn | cut -d "\"" -f 4` !934
if [[-z "$USER_ARN"]]; then !935

echo "You don't appear to be registered to aws services. Exiting" !936
else !937

USER=`echo "$USER_DATA" | grep UserName | cut -d "\"" -f 4` !938
USER_ID=`echo "$USER_ARN" | cut -d ":" -f 5` !939
#echo $USER:$USER_ID !940

fi !941
!942
declare -a instances=(1:r3.xlarge 1:r3.2xlarge 1:r3.4xlarge) !943
RESUME_STATE="false" !944
while getopts hra:s:k:i:p: opt; do !945
 case $opt in !946
 a) AMI_ID=$OPTARG !947

 ;; !948
 s) SG_ID=$OPTARG !949
 ;; !950
 k) KEY=$OPTARG !951
 ;; !952
 i) unset instances !953
 C_COUNT=0 !954
 for CMD in $OPTARG; do !955

if [[! `echo $CMD | cut -d ":" -f 1` =~ $re || `echo $CMD | grep ":" -o | wc -l` -gt 1 956
]]; then !…

echo "Invalid parameter for -i. Use the -h formore info." !957
exit !958

fi !959
instances[$C_COUNT]=$CMD !960
let C_COUNT++ !961

 done !962
!963

 ;; !964
 p) PARAM=$OPTARG !965
 ;; !966
 r) RESUME_STATE="true" !967

if [["$OPTARG" != ""]]; then !968
echo "The -r does not take additional parameter. Use the -h for additional info" !969
exit !970

fi !971
 ;; !972
 h | \?) cat<<EOU !973
!974
Usage: $0 [-a AMI_ID] [-s Security_group_ID] [-k KEY_NAME] [-i instances] [-r] [-p parameters] !975
 -a AMI_ID ID of the AMI to use !976
 -s Security_group_ID ID of the security group to use !977
 -k KEY_NAME Specify the name of the key to use without .pem !978
 -i instances List of instances to start es: "3:m3.medium 2:c4.2xlarge" !979
 -p parameters Parameters to pass to the run-*.sh script as "..." !980
 -r Enable resume mode !981
EOU !982
 exit !983
 ;; !984

 esac !985
done !986
!987
#Check if the selected AMI is available, if not give option to chose from list of owned 988
availabe AMIs !…
while [[`aws ec2 describe-images --image-id $AMI_ID 2>&1 | grep "\"Name\":"` = ""]]; do !989

echo "The specified ami does not exist. Do you wish to choose one from the ones you 990
own?(y/n)" !…

read_choice 5 "y" "n" "yes" "no" !991
if [[`echo $CHOICE | grep y` = ""]]; then !992

exit !993
else !994

IMAGES=`aws ec2 describe-images --filters Name=state,Values=available --owners 995
$USER_ID` !…

IMAGES_NAME=`echo "$IMAGES" | grep "\"Name\":" | cut -d "\"" -f 4` !996
IMAGES_ID=`echo "$IMAGES" | grep "\"ImageId\":" | cut -d "\"" -f 4` !997
make_list "$IMAGES_NAME" !998
read_choice 5 `seq $LENGHT` !999
AMI_ID=`echo "$IMAGES_ID" | head -n $CHOICE | tail -n 1` !1000
#echo $AMI_ID !1001

fi !1002
unset IMAGES !1003
unset IMAGES_NAME !1004
unset IMAGES_ID !1005

done !1006
!1007
#Check if the chosen key is available and recognized by aws !1008
while [[`find $KEYS_PATH -name "$KEY.pem"` = "" || `aws ec2 describe-key-pairs | grep $KEY` = 1009
""]]; do !…

echo "You dont own the specified key or it is not recognized by amazon." !1010
echo "Do you wish to choose it from the ones listed in aws that you own as well?(y/n)" !1011
read_choice 5 "y" "n" "yes" "no" !1012
if [[`echo $CHOICE | grep y` = ""]]; then !1013

exit !1014
else !1015

KEYS=`find $KEYS_PATH -name "*.pem"` !1016
KEYS_DATA=`aws ec2 describe-key-pairs` !1017
C_COUNT=0 !1018

while read -r line; do !1019
line=${line::-4} !1020
FIELD=`echo $line | grep "/" -o | wc -l` !1021
let FIELD++ !1022
KEY=`echo $line | cut -d "/" -f $FIELD` !1023
if [[`echo "$KEYS_DATA" | grep "$KEY"` != ""]]; then !1024

KEY_LIST[$C_COUNT]="$KEY" !1025
let C_COUNT++ !1026

fi !1027
done <<< "$KEYS" !1028
if [[$C_COUNT -lt 1]]; then !1029

echo "No matching key found. Exiting..." !1030
exit !1031

fi !1032
make_list "${KEY_LIST[@]}" !1033
read_choice 5 `seq $LENGHT` !1034
let CHOICE-- !1035
KEY="${KEY_LIST[$CHOICE]}" !1036
#echo $KEY !1037

fi !1038
unset KEY_LIST !1039
unset KEYS !1040
unset KEYS_DATA !1041

done !1042
!1043
while [[`aws ec2 describe-security-groups --group-ids $SG_ID 2>&1 | grep "\"GroupId\":"` = "" 1044
]]; do !…

echo "The specified security group does not exist.Do you wish to chose one frome those 1045
available on aws?(y/n)" !…

read_choice 5 "y" "n" "yes" "no" !1046
if [[`echo $CHOICE | grep y` = ""]]; then !1047

exit !1048
else !1049

SGS=`aws ec2 describe-security-groups` !1050
SGS_NAME=`echo "$SGS" | grep "\"GroupName\":" | cut -d "\"" -f 4` !1051
echo "$SGS_NAME" !1052
SGS_ID=`echo "$SGS" | grep "\"GroupId\":" | cut -d "\"" -f 4` !1053
make_list "$SGS_NAME" !1054

read_choice 5 `seq $LENGHT` !1055
SG_ID=`echo "$SGS_ID" | head -n $CHOICE | tail -n 1` !1056
echo $SG_ID !1057

fi !1058
unset SGS !1059
unset SGS_NAME !1060
unset SGS_ID !1061

done !1062
!1063
mkdir -p error_logs !1064
!1065
echo "Chose the kind of benchmarks to execute:" !1066
!1067
make_list "${benchmarks[@]}" !1068
read_choice 5 `seq $LENGHT` !1069
let CHOICE-- !1070
!1071
benchmark=${benchmarks[$CHOICE]} !1072
vol_size=${req_vol_size[$CHOICE]} !1073
if [[-z "$PARAM"]]; then !1074

PARAM=${parameters[$CHOICE]} !1075
fi !1076
!1077
#If a profile is associated with the benchmark, enable it for the run-instances command !1078
if [["${profiles[$CHOICE]}" != ""]]; then !1079

profile="--iam-instance-profile Name=\"${profiles[$CHOICE]}\"" !1080
else !1081

profile="" !1082
fi !1083
!1084
!1085
#echo "$benchmark:$vol_size:$profile" !1086
#echo "${instances[@]}" !1087
!1088
##1089
############### !…
#Find an ebs volume with the same name of the benchmark containing the files. If not terminate 1090
script !…

#This script wont work if all the require files aren't in an ebs volume with the Name tag set 1091
as the benchmark name !…
#Exception for s3_stresstest_d/u that go with the same volume s3_stresstest !1092
!1093
if [[`echo $benchmark | grep s3_stresstest` != "" || "$benchmark" = "test_fermigrid"]]; then !1094

a_benchmark="s3_stresstest" !1095
else !1096

a_benchmark=$benchmark !1097
fi !1098
!1099
BM_VOLUME_DATA=`aws ec2 describe-volumes --filters Name=tag-value,Values=$a_benchmark` !1100
BM_VOLUME_ID=`echo "$BM_VOLUME_DATA" | grep -F "VolumeId" | cut -d "\"" -f 4` !1101
AVAL_ZONE=`echo "$BM_VOLUME_DATA" | grep -F "AvailabilityZone" | cut -d "\"" -f 4` !1102
!1103
if ["$BM_VOLUME_ID" = ""]; then !1104

echo "Can't find the right volume. Quitting..." !1105
exit !1106

fi !1107
!1108
#echo -e "$instances\n$PARAM\n$benchmark:$vol_size" !1109
#exit !1110
!1111
##1112
############### !…
#Create folder to store the VMS data + Resume work option !1113
COUNT2=0 !1114
RESUME=0 !1115
mkdir -p $TMP_PATH/$benchmark !1116
if $RESUME_STATE; then !1117

if [[-f $TMP_PATH/$benchmark/VMS]]; then !1118
echo "I've found previously loaded tmp data. Do you wish to resume work?(y/n)" !1119
echo "(Works for scripts that got stopped before the volume creation section or 1120

requires manual bypass of script parts)" !…
read_choice 5 "y" "n" "yes" "no" !1121

fi !1122
if [["$CHOICE" != "n"]]; then !1123

while read -r line; do !1124
if [["$line" != ""]]; then !1125

I_TYPES[`echo "$line" | cut -d ":" -f 1`]=`echo "$line" | cut -d ":" -f 2` !1126
VM_IDS[$COUNT2]=`echo "$line" | cut -d ":" -f 3` !1127
VM_PUB_DNS[$COUNT2]=`echo "$line" | cut -d ":" -f 4` !1128
#echo "$COUNT2 ${I_TYPES[$COUNT2]} ${CM_IDS[$COUNT2]} 1129

${VM_PUB_DNS[$COUNT2]}" !…
let COUNT2++ !1130
let RESUME++ !1131

fi !1132
done < $TMP_PATH/$benchmark/VMS !1133

else !1134
echo "" > $TMP_PATH/$benchmark/VMS !1135

fi !1136
fi !1137
!1138
##1139
############### !…
#Starting the required VM !1140
!1141
for ((COUNT=0;COUNT<${#instances[@]};COUNT++)); do !1142

I_NUM=`echo "${instances[$COUNT]}" | cut -d ":" -f 1` !1143
I_TYPE=`echo "${instances[$COUNT]}" | cut -d ":" -f 2` !1144

!1145
if [[$I_NUM -gt $SAME_INSTANCE_LIMIT]]; then !1146

echo "The number ($I_NUM) specified for instance $I_TYPE exceeds the limit of 1147
$SAME_INSTANCE_LIMIT." !…

echo "Bringing it down to the maximun allowed..." !1148
I_NUM=$SAME_INSTANCE_LIMIT !1149

fi !1150
echo "Launching $I_NUM $I_TYPE instances" !1151

!1152
INSTANCE_DATA=`aws ec2 run-instances --count $I_NUM --image-id $AMI_ID --instance-type 1153

$I_TYPE --security-group-ids $SG_ID --placement …
AvailabilityZone=$AVAL_ZONE,GroupName="",Tenancy=default --key-name $KEY $profile` !…
!1154

if [[$RESUME -gt 0 && "${I_TYPES[$(expr $RESUME - 1)]}" = "$I_TYPE"]]; then !1155
I_COUNT=$RESUME !1156

else !1157
I_COUNT=1 !1158

fi !1159
L_COUNT=1 !1160
while [[$I_COUNT -le $I_NUM]]; do !1161

I_TYPES[$COUNT2]=$I_TYPE !1162
INSTANCE_ID=`echo "$INSTANCE_DATA" | grep -F "InstanceId" | head -n $L_COUNT | tail -n 1163

1 | cut -d "\"" -f 4` !…
VM_IDS[$COUNT2]=$INSTANCE_ID !1164
aws ec2 create-tags --resources $INSTANCE_ID --tags 1165

Key=Name,Value=$USER-$I_TYPE-$benchmark-$I_COUNT Key=User,Value=$USER>/dev/null !…
let I_COUNT++ !1166
let L_COUNT++ !1167
let COUNT2++ !1168

done !1169
done !1170
LAST_INSTANCE=$(expr $COUNT2 - 1) !1171
!1172
##1173
############### !…
#Get the public DNS after they are available !1174
echo "Waiting for the DNS..." !1175
while [[`aws ec2 describe-instances --instance-ids ${VM_IDS[$LAST_INSTANCE]}| grep -F 1176
"PublicDnsName" | cut -d "\"" -f 4 | uniq` = ""]]; do !…

sleep 10 !1177
done !1178
sleep 5 !1179
!1180
for ((COUNT=$RESUME;COUNT<${#VM_IDS[@]};COUNT++)); do !1181

INSTANCE_DATA=`aws ec2 describe-instances --instance-ids ${VM_IDS[$COUNT]}` !1182
PUB_DNS=`echo "$INSTANCE_DATA" | grep -F "PublicDnsName" | cut -d "\"" -f 4 | uniq` !1183
#Print VMS data in tmp file !1184
echo "$COUNT:${I_TYPES[$COUNT]}:${VM_IDS[$COUNT]}:$PUB_DNS" >> $TMP_PATH/$benchmark/VMS !1185
VM_PUB_DNS[$COUNT]=$PUB_DNS !1186

done !1187
!1188
##1189
############### !…
#Create extra volumes !1190
for ((COUNT=0;COUNT<${#VM_IDS[@]};COUNT++)); do !1191

if [["${I_TYPES[$COUNT]}" = "${I_TYPES[$(expr $COUNT - 1)]}" && $COUNT -gt 0]]; then !1192
let I_COUNT++ !1193

else !1194
I_COUNT=1 !1195

fi !1196
echo "Creating extradisk for instance ${I_TYPES[$COUNT]}-$I_COUNT" !1197
VOLUME_DATA=`aws ec2 create-volume --size $vol_size --availability-zone us-west-2a 1198

--volume-type gp2` !…
VOLUME_ID[$COUNT]=`echo "$VOLUME_DATA" | grep -F "VolumeId" | cut -d "\"" -f 4` !1199

done !1200
!1201
##1202
############### !…
#Wait until all VM are done initialazing !1203
echo "Waiting for the instances to be initialized..." !1204
for ((COUNT=0;COUNT<${#VM_IDS[@]};COUNT++)); do !1205

while [[`nmap -p 22 ${VM_PUB_DNS[$COUNT]} | grep open` = ""]]; do !1206
sleep 15 !1207

done !1208
done !1209
!1210
!1211
##1212
############### !…
#Disable the self-stop service and register the connection to the DNS (won't ask yes/no 1213
afterwards) !…
for ((COUNT=0;COUNT<${#VM_IDS[@]};COUNT++)); do !1214

ssh -o "StrictHostKeyChecking no" -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} 1215
"service glideinwms-pilot stop">/dev/null !…

#echo "Stopped service in instance ${instances[$COUNT]}." !1216
done !1217
!1218
!1219
##1220
############### !…
#Waiting for volumes to create !1221
echo "Waiting for volumes to create..." !1222
for ((COUNT=0;COUNT<${#VOLUME_ID[@]};COUNT++)); do !1223

while [[`aws ec2 describe-volumes --volume-ids ${VOLUME_ID[$COUNT]} | grep available` = 1224
""]]; do !…

#echo "Waiting for disk to create..." !1225
sleep 5 !1226

done !1227
if [["${I_TYPES[$COUNT]}" = "${I_TYPES[$(expr $COUNT - 1)]}" && $COUNT -gt 0]]; then !1228

let I_COUNT++ !1229
else !1230

I_COUNT=1 !1231
fi !1232
aws ec2 create-tags --resources ${VOLUME_ID[$COUNT]} --tags 1233

Key=Name,Value=$USER-${I_TYPES[$COUNT]}-$benchmark-$I_COUNT Key=user,Value=$USER>/dev/null !…
done !1234
!1235
##1236
############### !…
#Attaching Volumes !1237
echo "Attaching Volumes..." !1238
for ((COUNT=0;COUNT<${#VOLUME_ID[@]};COUNT++)); do !1239

aws ec2 attach-volume --volume-id ${VOLUME_ID[$COUNT]} --instance-id ${VM_IDS[$COUNT]} 1240
--device /dev/sdf>/dev/null !…
done !1241
!1242
##1243
############### !…
#Waiting for volumes to attach !1244
echo "Waiting for volumes to attach and making filesystem..." !1245
for ((COUNT=0;COUNT<${#VOLUME_ID[@]};COUNT++)); do !1246

while [[`aws ec2 describe-volumes --volume-ids ${VOLUME_ID[$COUNT]} | grep attaching` != 1247
""]]; do !…

sleep 3 !1248
done !1249
if [["${I_TYPES[$COUNT]}" = "${I_TYPES[$(expr $COUNT - 1)]}" && $COUNT -gt 0]]; then !1250

let I_COUNT++ !1251
else !1252

I_COUNT=1 !1253
fi !1254
echo "Making file system ext4 for ${I_TYPES[$COUNT]}-$I_COUNT..." !1255

ssh -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} "mkfs.ext4 /dev/xvdf 1256
2>/dev/null">/dev/null & !…
done !1257
wait !1258
: ' !1259
#Changed to create for all !1260
##1261
############### !…
#If the instance doesn t have a storage volume create it and make the system file as ext4 !1262
echo "Creating extrastorage if needed..." !1263
for ((COUNT=0;COUNT<${#VM_IDS[@]};COUNT++)); do !1264

#if [[`echo "${instances[$COUNT]}" | grep 3` = ""]]; then !1265
if [["${I_TYPES[$COUNT]}" = "${I_TYPES[$(expr $COUNT - 1)]}" && $COUNT -gt 0]]; then !1266

let I_COUNT++ !1267
else !1268

I_COUNT=1 !1269
fi !1270
echo "Creating extradisk for instance ${I_TYPES[$COUNT]}-$I_COUNT" !1271
VOLUME_DATA=`aws ec2 create-volume --size $vol_size --availability-zone us-west-2a 1272

--volume-type gp2` !…
VOLUME_ID=`echo "$VOLUME_DATA" | grep -F "VolumeId" | cut -d "\"" -f 4` !1273
aws ec2 create-tags --resources $VOLUME_ID --tags 1274

Key=Name,Value=$USER-${instances[$COUNT]}-$benchmark-$I_COUNT Key=user,Value=$USER>/dev/null !…
while [[`aws ec2 describe-volumes --volume-ids $VOLUME_ID | grep available` = ""]]; do !1275

#echo "Waiting for disk to create..." !1276
sleep 5 !1277

done !1278
aws ec2 attach-volume --volume-id $VOLUME_ID --instance-id ${VM_IDS[$COUNT]} --device 1279

/dev/sdf>/dev/null !…
while [[`aws ec2 describe-volumes --volume-ids $VOLUME_ID | grep attaching` != ""]]; do !1280

sleep 3 !1281
done !1282
ssh -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} "mkfs.ext4 /dev/xvdf 1283

2>/dev/null">/dev/null !…
#echo "Volume attaccato a ${instances[$COUNT]}" !1284

#else !1285
#echo "No extradisk for instance ${instances[$COUNT]}." !1286

#fi !1287

done' !1288
!1289
##1290
############### !…
#Mount the volumes and transfer the benchmark via script !1291
echo "Mounting volumes and transfering benchmarks..." !1292
: 'cat <<TRANSFER > transfer.sh !1293
#!/bin/bash !1294
!1295
mkdir -p /scratch !1296
mkdir -p /scratch02 !1297
!1298
if [[\`fdisk -l | grep xvdb\` != ""]]; then !1299

mount /dev/xvdb /scratch !1300
mount /dev/xvdf /scratch02 !1301

else !1302
mount /dev/xvdf /scratch/ !1303
mount /dev/xvdg /scratch02/ !1304

fi !1305
cp /scratch02/* /scratch/ !1306
if [[\`fdisk -l | grep xvdb\` != ""]]; then !1307

umount /dev/xvdf !1308
else !1309

umount /dev/xvdg !1310
fi !1311
rm -r -f /scratch02/ !1312
exit !1313
TRANSFER' !1314
!1315
cat <<TRANSFER > transfer.sh !1316
#!/bin/bash !1317
!1318
mkdir -p /scratch !1319
mkdir -p /scratch02 !1320
!1321
mount /dev/xvdf /scratch !1322
mount /dev/xvdg /scratch02 !1323
!1324

cp /scratch02/* /scratch/ !1325
!1326
umount /dev/xvdg !1327
!1328
rm -r -f /scratch02/ !1329
exit !1330
TRANSFER !1331
!1332
for ((COUNT=0;COUNT<${#VM_IDS[@]};COUNT++)); do !1333

scp -i $KEYS_PATH/$KEY.pem transfer.sh root@${VM_PUB_DNS[$COUNT]}:/root/>/dev/null 2>&1 !1334
: 'if [[`echo "${instances[$COUNT]}" | grep 3` = ""]]; then !1335

aws ec2 attach-volume --volume-id $BM_VOLUME_ID --instance-id ${VM_IDS[$COUNT]} 1336
--device /dev/sdg>/dev/null !…

else !1337
aws ec2 attach-volume --volume-id $BM_VOLUME_ID --instance-id ${VM_IDS[$COUNT]} 1338

--device /dev/sdf>/dev/null !…
fi' !1339

!1340
aws ec2 attach-volume --volume-id $BM_VOLUME_ID --instance-id ${VM_IDS[$COUNT]} --device 1341

/dev/sdg>/dev/null !…
while [[`aws ec2 describe-volumes --volume-ids $BM_VOLUME_ID | grep attaching` != ""]]; 1342

do !…
sleep 3 !1343

done !1344
ssh -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} "sh /root/transfer.sh">/dev/null 1345

2>>error_logs/transfer_error-$COUNT.log !…
ssh -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} "rm /root/transfer.sh">/dev/null 1346

2>&1 !…
aws ec2 detach-volume --volume-id $BM_VOLUME_ID --instance-id ${VM_IDS[$COUNT]} --device 1347

/dev/sdg>/dev/null !…
!1348

: 'if [[`echo "${instances[$COUNT]}" | grep 3` = ""]]; then !1349
aws ec2 detach-volume --volume-id $BM_VOLUME_ID --instance-id ${VM_IDS[$COUNT]} 1350

--device /dev/sdg>/dev/null !…
else !1351

aws ec2 detach-volume --volume-id $BM_VOLUME_ID --instance-id ${VM_IDS[$COUNT]} 1352
--device /dev/sdf>/dev/null !…

fi' !1353

while [[`aws ec2 describe-volumes --volume-ids $BM_VOLUME_ID | grep detaching` != ""]]; 1354
do !…

sleep 5 !1355
done !1356

done !1357
!1358
rm -f transfer.sh !1359
!1360
!1361
##1362
############### !…
#Start the benchmark !1363
echo "Starting the benchmark on every instance..." !1364
for ((COUNT=0;COUNT<${#VM_IDS[@]};COUNT++)); do !1365

scp -i $KEYS_PATH/$KEY.pem $FILES_PATH/run-$benchmark.sh 1366
root@${VM_PUB_DNS[$COUNT]}:/root/>/dev/null 2>&1 !…

ssh -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} "chmod 755 /root/run-$benchmark.sh" 1367
>/dev/null 2>&1 !…

ssh -i $KEYS_PATH/$KEY.pem root@${VM_PUB_DNS[$COUNT]} "/root/run-$benchmark.sh 1368
$PARAM">/dev/null 2>>error_logs/run_error_$COUNT.log & !…
done !1369
!1370
echo "I'm done. Wait for the benchmark to be over and than launch the crop_results.sh script." !1371
!1372
exit !1373
!1374
!1375
!1376
----------- !1377
----------- !1378
----------- !1379
!1380
!1381
File: predictiondecisionengine/trunk/bin/Fermilab/From_EBS/run-hepspec06.sh !1382
#!/bin/bash !1383
!1384
if [[`which rpm` = "" || `which rpm | grep -F "no aws"` != ""]]; then !1385

yum install rpm !1386

fi !1387
!1388
if [[`rpm -qa gcc-c++` = ""]]; then !1389

yum install gcc-c++ !1390
fi !1391
!1392
cd /scratch !1393
tar xvzf SPEC_CPU2006v1.1.tar.gz !1394
!1395
cd SPEC_CPU2006v1.1 !1396
!1397
ln -s /usr/bin/gcc /usr/local/bin/gcc !1398
./install.sh -d ../install/ -f !1399
!1400
cd .. !1401
mkdir hepspec !1402
cd hepspec !1403
tar xvzf ../spec2k6-2.23.tar.gz !1404
cp linux64-gcc_cern.cfg ../install/config !1405
!1406
!1407
cd ../install !1408
. ./shrc !1409
#runspec --config=linux64-gcc_cern.cfg all_cpp !1410
mkdir -p ./results !1411
#mv ./result ./results/Single_core !1412
!1413
COUNT=`grep -c "^processor" /proc/cpuinfo`; !1414
for i in `seq $COUNT`; !1415
do !1416
 runspec --config=linux64-gcc_cern.cfg all_cpp & !1417
done !1418
wait !1419
!1420
mv ./result ./results/All_cores !1421
!1422
!1423
----------- !1424

----------- !1425
----------- !1426
!1427
!1428
File: predictiondecisionengine/trunk/bin/Fermilab/From_EBS/run-s3_stresstest_d.sh !1429
#!/bin/bash !1430
!1431
TEST_BUCKET=grassano-test !1432
TEST_FILE=ACEE623F-B1A8-E411-8672-0025905938B4.root !1433
: 'service glideinwms-pilot stop !1434
!1435
mkfs.ext4 /dev/xvdf 2>/dev/null !1436
mkdir -p /scratch !1437
mount /dev/xvdf /scratch' !1438
!1439
cd /scratch !1440
!1441
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !1442

#wget https://s3.amazonaws.com/aws-cli/awscli-bundle.zip !1443
unzip awscli-bundle.zip !1444
python awscli-bundle/install !1445
PATH=$PATH:/root/.local/lib/aws/bin !1446
export PATH !1447
#mkdir /root/.aws !1448
#mv /scratch/config /root/.aws/ !1449
#chmod 400 /root/.aws/config !1450

fi !1451
!1452
!1453
echo "Download test" > s3_stress.log !1454
LIST="1 10 100" !1455
if [[$# -gt 0]]; then !1456

LIST="$@" !1457
fi !1458
#NUM=1 !1459
for NUM in $LIST; do !1460

mkdir -p $NUM !1461
echo "Simultaneous download of $NUM copies..." >>s3_stress.log !1462

date >>s3_stress.log !1463
for n in `seq $NUM`; do !1464

aws s3 cp s3://$TEST_BUCKET/$TEST_FILE $NUM/$n.root > $NUM/$n.log 2>&1 & !1465
done !1466
wait !1467
date >>s3_stress.log !1468
echo -e "`ls -l $NUM/ | grep 1073604531 | wc -l` out of $NUM successfully downloaded\n" 1469

>>s3_stress.log !…
#let NUM*=10 !1470
#echo $NUM !1471

done !1472
!1473
exit !1474
!1475
----------- !1476
----------- !1477
----------- !1478
!1479
!1480
File: predictiondecisionengine/trunk/bin/Fermilab/From_EBS/run-s3_stresstest_u.sh !1481
#!/bin/bash !1482
!1483
TEST_BUCKET=grassano-test !1484
TEST_FILE=ACEE623F-B1A8-E411-8672-0025905938B4.root !1485
: 'service glideinwms-pilot stop !1486
!1487
mkfs.ext4 /dev/xvdf 2>/dev/null !1488
mkdir -p /scratch !1489
mount /dev/xvdf /scratch' !1490
!1491
cd /scratch !1492
!1493
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !1494

#wget https://s3.amazonaws.com/aws-cli/awscli-bundle.zip !1495
unzip awscli-bundle.zip !1496
python awscli-bundle/install !1497
PATH=$PATH:/root/.local/lib/aws/bin !1498
export PATH !1499

#mkdir /root/.aws !1500
#mv /scratch/config /root/.aws/ !1501
#chmod 400 /root/.aws/config !1502

fi !1503
!1504
ID=$RANDOM !1505
echo "Upload test ID=$ID" > s3_stress.log !1506
LIST="1 10 100" !1507
if [[$# -gt 0]]; then !1508

LIST="$@" !1509
fi !1510
#NUM=1 !1511
for NUM in $LIST; do !1512

mkdir -p $NUM !1513
echo "Simultaneous upload of $NUM copies..." >>s3_stress.log !1514
date >>s3_stress.log !1515
for n in `seq $NUM`; do !1516

aws s3 cp $TEST_FILE s3://$TEST_BUCKET/$NUM-$ID/$n.root > $NUM/$n.log 2>&1 & !1517
done !1518
wait !1519
date >>s3_stress.log !1520
echo -e "`aws s3api list-objects --bucket $TEST_BUCKET --prefix $NUM-$ID/ | grep 1521

1073604531 | wc -l` out of $NUM successfully uploaded\n" >>s3_stress.log !…
#let NUM*=10 !1522
#echo $NUM !1523

done !1524
!1525
exit !1526
!1527
----------- !1528
----------- !1529
----------- !1530
!1531
!1532
File: predictiondecisionengine/trunk/bin/Fermilab/From_EBS/run-test_fermigrid.sh !1533
#!/bin/bash !1534
!1535
TEST_BUCKET=grassano-test !1536

TEST_FILE=ACEE623F-B1A8-E411-8672-0025905938B4.root !1537
!1538
cd /scratch !1539
mv x509up_u50685 /tmp/x509up_u0 !1540
voms-proxy-init -noregen -voms fermilab:/fermilab !1541
: ' !1542
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !1543

wget https://s3.amazonaws.com/aws-cli/awscli-bundle.zip !1544
unzip awscli-bundle.zip !1545
python awscli-bundle/install !1546
PATH=$PATH:/root/.local/lib/aws/bin !1547
export PATH !1548
#mkdir /root/.aws !1549
#mv /scratch/config /root/.aws/ !1550
#chmod 400 /root/.aws/config !1551

fi !1552
' !1553
!1554
DEST=gsiftp://fndca1.fnal.gov:2811/fermigrid202/grassano !1555
ID=$RANDOM !1556
echo "Upload test ID=$ID" > fermigrid_upload.log !1557
echo "" > data.txt !1558
if [[! -f $TEST_FILE]]; then !1559

aws s3 cp s3://$TEST_BUCKET/$TEST_FILE ./ !1560
fi !1561
LIST="1 5 10 20" !1562
if [[$# -gt 0]]; then !1563

LIST="$@" !1564
fi !1565
for NUM in $LIST; do !1566

#mkdir -p $NUM !1567
echo "Simultaneous upload of $NUM copies..." >>fermigrid_upload.log !1568
echo "" > data.txt !1569
for n in `seq $NUM`; do !1570

echo "file:///scratch/$TEST_FILE $DEST/$ID/$n.root" >> data.txt !1571
done !1572
date >>fermigrid_upload.log !1573
globus-url-copy -cd -fast -p 4 -cc $NUM -f data.txt >> globus.log 2>&1 !1574

date >>fermigrid_upload.log !1575
echo -e "`edg-gridftp-ls -v $DEST/$ID/ | grep 1073604531 | wc -l` out of $NUM successfully 1576

uploaded\n" >>fermigrid_upload.log !…
for n in `seq $NUM`; do !1577

edg-gridftp-rm $DEST/$ID/$n.root !1578
done !1579
edg-gridftp-rmdir $DEST/$ID/ !1580
#let NUM*=10 !1581
#echo $NUM !1582

done !1583
!1584
exit !1585
!1586
----------- !1587
----------- !1588
----------- !1589
!1590
!1591
File: predictiondecisionengine/trunk/bin/Fermilab/From_EBS/run-tt_bar_gensim.sh !1592
#!/bin/bash !1593
!1594
cd /scratch !1595
!1596
tar -zxf benchmark-2015.tgz !1597
!1598
groupadd cms_admin !1599
useradd -g cms_admin cms_admin !1600
!1601
ln -s /scratch/cms/ /tmp/cms !1602
chown -R cms_admin.cms_admin /tmp/cms/ !1603
!1604
cd /tmp/cms/ !1605
su cms_admin -c "sh benchmark-2015-gensim.sh 1">log !1606
mv results results.Single_core !1607
!1608
su cms_admin -c "sh benchmark-2015-gensim.sh">log !1609
mv results results.All_cores !1610
!1611

----------- !1612
----------- !1613
----------- !1614
!1615
!1616
File: predictiondecisionengine/trunk/bin/Fermilab/From_EBS/run-tt_bar_reco.sh !1617
#!/bin/bash !1618
!1619
groupadd cms_admin !1620
useradd -g cms_admin cms_admin !1621
!1622
cd /scratch !1623
tar -zxf /scratch/benchmark-2015.tgz !1624
ln -s /scratch/tmp/cms/ /tmp/cms !1625
!1626
mv /scratch/ACEE623F-B1A8-E411-8672-0025905938B4.root /tmp/cms !1627
mv /scratch/ttbarGENSIM.root /tmp/cms !1628
mv /scratch/step2-50ns-4x-6400.root /tmp/cms !1629
mv -f /scratch/*.sh /tmp/cms !1630
!1631
mv /scratch/frontier-cache.tgz /tmp/cms !1632
cd /tmp/cms/ !1633
tar -zxf /tmp/cms/frontier-cache.tgz !1634
!1635
chown -R cms_admin.cms_admin /tmp/cms/ !1636
!1637
su cms_admin -c "sh start_x_benchmarks_reco.sh">>log & !1638
!1639
exit !1640
!1641
----------- !1642
----------- !1643
----------- !1644
!1645
!1646
File: predictiondecisionengine/trunk/bin/Fermilab/run-hepspec06.sh !1647
#!/bin/bash !1648
!1649

shift !1650
shift !1651
!1652
TEST_BUCKET=grassano-test !1653
!1654
mkdir -p /scratch/ !1655
mount /dev/xvdf /scratch/ !1656
!1657
if [[`which rpm` = "" || `which rpm | grep -F "no aws"` != ""]]; then !1658

yum install rpm !1659
fi !1660
!1661
if [[`rpm -qa gcc-c++` = ""]]; then !1662

yum install gcc-c++ !1663
fi !1664
!1665
cd /scratch !1666
!1667
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !1668

if [[-e /root/.local/lib/aws/bin]]; then !1669
export PATH=$PATH:/root/.local/lib/aws/bin !1670

else !1671
wget https://s3.amazonaws.com/aws-cli/awscli-bundle.zip !1672
unzip awscli-bundle.zip !1673
python awscli-bundle/install !1674
export PATH=$PATH:/root/.local/lib/aws/bin !1675
#mkdir /root/.aws !1676
#mv /scratch/config /root/.aws/ !1677
#chmod 400 /root/.aws/config !1678

fi !1679
fi !1680
!1681
aws s3 cp --recursive s3://$TEST_BUCKET/hepspec06/ . !1682
!1683
tar xvzf SPEC_CPU2006v1.1.tar.gz !1684
!1685
cd SPEC_CPU2006v1.1 !1686
!1687

ln -s /usr/bin/gcc /usr/local/bin/gcc !1688
./install.sh -d ../install/ -f !1689
!1690
cd .. !1691
mkdir hepspec !1692
cd hepspec !1693
tar xvzf ../spec2k6-2.23.tar.gz !1694
cp linux64-gcc_cern.cfg ../install/config !1695
!1696
!1697
cd ../install !1698
. ./shrc !1699
if [[$# -eq 1 && $1 -eq 0]]; then !1700

exit !1701
fi !1702
runspec --config=linux64-gcc_cern.cfg all_cpp !1703
mkdir -p ./results !1704
mv ./result ./results/Single_core !1705
!1706
COUNT=`grep -c "^processor" /proc/cpuinfo`; !1707
for i in `seq $COUNT`; !1708
do !1709
 runspec --config=linux64-gcc_cern.cfg all_cpp & !1710
done !1711
wait !1712
!1713
mv ./result ./results/All_cores !1714
!1715
!1716
----------- !1717
----------- !1718
----------- !1719
!1720
!1721
File: predictiondecisionengine/trunk/bin/Fermilab/run-s3_stresstest_d.sh !1722
#!/bin/bash !1723
!1724
shift !1725

shift !1726
TEST_BUCKET=grassano-test !1727
TEST_FILE=ACEE623F-B1A8-E411-8672-0025905938B4.root !1728
!1729
mkdir -p /scratch/ !1730
mount /dev/xvdf /scratch/ !1731
cd /scratch !1732
!1733
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !1734

if [[-e /root/.local/lib/aws/bin]]; then !1735
export PATH=$PATH:/root/.local/lib/aws/bin !1736

else !1737
wget https://s3.amazonaws.com/aws-cli/awscli-bundle.zip !1738
unzip awscli-bundle.zip !1739
python awscli-bundle/install !1740
export PATH=$PATH:/root/.local/lib/aws/bin !1741
#mkdir /root/.aws !1742
#mv /scratch/config /root/.aws/ !1743
#chmod 400 /root/.aws/config !1744

fi !1745
fi !1746
!1747
echo "Download test" > s3_stress.log !1748
LIST="1 10 100" !1749
if [[$# -gt 0]]; then !1750

LIST="$@" !1751
fi !1752
if [[$# -eq 1 && $1 -eq 0]]; then !1753

exit !1754
fi !1755
#NUM=1 !1756
for NUM in $LIST; do !1757

mkdir -p $NUM !1758
echo "Simultaneous download of $NUM copies..." >>s3_stress.log !1759
date >>s3_stress.log !1760
for n in `seq $NUM`; do !1761

aws s3 cp s3://$TEST_BUCKET/s3_stresstest/$TEST_FILE $NUM/$n.root > $NUM/$n.log 2>&1 & !1762
done !1763

wait !1764
date >>s3_stress.log !1765
echo -e "`ls -l $NUM/ | grep 1073604531 | wc -l` out of $NUM successfully downloaded\n" 1766

>>s3_stress.log !…
#let NUM*=10 !1767
#echo $NUM !1768

done !1769
!1770
exit !1771
!1772
----------- !1773
----------- !1774
----------- !1775
!1776
!1777
File: predictiondecisionengine/trunk/bin/Fermilab/run-s3_stresstest_u.sh !1778
#!/bin/bash !1779
!1780
TIME=$1 !1781
shift !1782
ID=$1 !1783
shift !1784
sleep $((240 + `date -d "$TIME" +%s` - `date +%s`)) & !1785
WAIT_ID=$! !1786
!1787
TEST_BUCKET=grassano-test !1788
TEST_FILE=ACEE623F-B1A8-E411-8672-0025905938B4.root !1789
!1790
mkdir -p /scratch/ !1791
mount /dev/xvdf /scratch/ !1792
cd /scratch !1793
!1794
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !1795

if [[-e /root/.local/lib/aws/bin]]; then !1796
export PATH=$PATH:/root/.local/lib/aws/bin !1797

else !1798
wget https://s3.amazonaws.com/aws-cli/awscli-bundle.zip !1799
unzip awscli-bundle.zip !1800

python awscli-bundle/install !1801
export PATH=$PATH:/root/.local/lib/aws/bin !1802
#mkdir /root/.aws !1803
#mv /scratch/config /root/.aws/ !1804
#chmod 400 /root/.aws/config !1805

fi !1806
fi !1807
!1808
aws s3 cp s3://$TEST_BUCKET/s3_stresstest/$TEST_FILE . !1809
!1810
#ID=$RANDOM !1811
echo "Upload test ID=$ID" > s3_stress.log !1812
LIST="1 10 100" !1813
if [[$# -gt 0]]; then !1814

LIST="$@" !1815
fi !1816
if [[$# -eq 1 && $1 -eq 0]]; then !1817

exit !1818
fi !1819
!1820
wait $WAIT_ID !1821
for NUM in $LIST; do !1822

mkdir -p $NUM !1823
echo "Simultaneous upload of $NUM copies..." >>s3_stress.log !1824
date >>s3_stress.log !1825
for n in `seq $NUM`; do !1826

aws s3 cp $TEST_FILE s3://$TEST_BUCKET/$NUM-$ID/$n.root > $NUM/$n.log 2>&1 & !1827
done !1828
wait !1829
date >>s3_stress.log !1830
echo -e "`aws s3api list-objects --bucket $TEST_BUCKET --prefix $NUM-$ID/ | grep 1831

1073604531 | wc -l` out of $NUM successfully uploaded\n" >>s3_stress.log !…
#let NUM*=10 !1832
#echo $NUM !1833

done !1834
!1835
exit !1836
!1837

----------- !1838
----------- !1839
----------- !1840
!1841
!1842
File: predictiondecisionengine/trunk/bin/Fermilab/run-test_fermigrid.sh !1843
#!/bin/bash !1844
!1845
TIME=$1 !1846
shift !1847
ID=$1 !1848
shift !1849
sleep $((240 + `date -d "$TIME" +%s` - `date +%s`)) & !1850
WAIT_ID=$! !1851
!1852
TEST_BUCKET=grassano-test !1853
TEST_FILE=ACEE623F-B1A8-E411-8672-0025905938B4.root !1854
!1855
mkdir -p /scratch/ !1856
mount /dev/xvdf /scratch/ !1857
cd /scratch !1858
!1859
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !1860

if [[-e /root/.local/lib/aws/bin]]; then !1861
export PATH=$PATH:/root/.local/lib/aws/bin !1862

else !1863
wget https://s3.amazonaws.com/aws-cli/awscli-bundle.zip !1864
unzip awscli-bundle.zip !1865
python awscli-bundle/install !1866
export PATH=$PATH:/root/.local/lib/aws/bin !1867
#mkdir /root/.aws !1868
#mv /scratch/config /root/.aws/ !1869
#chmod 400 /root/.aws/config !1870

fi !1871
fi !1872
!1873
aws s3 cp --recursive s3://$TEST_BUCKET/s3_stresstest/ . !1874
!1875

#Remember to keep the certificates valid and modify the script if the users number changes 1876
(The 0 is always for root) !…
mv x509up_u50685 /tmp/x509up_u0 !1877
chmod 400 /tmp/x509up_u0 !1878
rm -f /etc/grid-security/certificates/*.r0 !1879
voms-proxy-init -noregen -voms fermilab:/fermilab !1880
!1881
!1882
DEST=gsiftp://fndca1.fnal.gov:2811/fermigrid202/grassano !1883
#ID=$RANDOM !1884
echo "Upload test ID=$ID" > fermigrid_upload.log !1885
#wait $WAIT_ID !1886
echo "" > data.txt !1887
LIST="1 5 10 20" !1888
if [[$# -gt 0]]; then !1889

LIST="$@" !1890
fi !1891
if [[$# -eq 1 && $1 -eq 0]]; then !1892

kill $WAIT_ID !1893
exit !1894

fi !1895
for NUM in $LIST; do !1896

#mkdir -p $NUM !1897
echo "Simultaneous upload of $NUM copies..." >>fermigrid_upload.log !1898
echo "" > data.txt !1899
for n in `seq $NUM`; do !1900

echo "file:///scratch/$TEST_FILE $DEST/$ID/$n.root" >> data.txt !1901
done !1902
date >>fermigrid_upload.log !1903
if [[$NUM -le 5]]; then !1904

CONCURRENCY=$NUM !1905
else !1906

CONCURRENCY=5 !1907
fi !1908
globus-url-copy -cd -fast -p 4 -cc $CONCURRENCY -v -f data.txt >> command.log 2>&1 !1909
date >>fermigrid_upload.log !1910
echo -e "`edg-gridftp-ls -v $DEST/$ID/ | grep 1073604531 | wc -l` out of $NUM successfully 1911

uploaded\n" >>fermigrid_upload.log !…

for n in `seq $NUM`; do !1912
edg-gridftp-rm $DEST/$ID/$n.root !1913

done !1914
edg-gridftp-rmdir $DEST/$ID/ !1915
#let NUM*=10 !1916
#echo $NUM !1917

done !1918
!1919
exit !1920
!1921
----------- !1922
----------- !1923
----------- !1924
!1925
!1926
File: predictiondecisionengine/trunk/bin/Fermilab/run-test_fermigrid2.sh !1927
#!/bin/bash !1928
!1929
TIME=$1 !1930
shift !1931
ID=$1 !1932
shift !1933
sleep $((180 + `date -d "$TIME" +%s` - `date +%s`)) & !1934
WAIT_ID=$! !1935
!1936
TEST_BUCKET=grassano-test !1937
TEST_FILE=ACEE623F-B1A8-E411-8672-0025905938B4.root !1938
!1939
mkdir -p /scratch/ !1940
mount /dev/xvdf /scratch/ >/dev/null 2>&1 !1941
cd /scratch !1942
!1943
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !1944

if [[-e /root/.local/lib/aws/bin]]; then !1945
export PATH=$PATH:/root/.local/lib/aws/bin !1946

else !1947
wget https://s3.amazonaws.com/aws-cli/awscli-bundle.zip !1948
unzip awscli-bundle.zip !1949

python awscli-bundle/install !1950
export PATH=$PATH:/root/.local/lib/aws/bin !1951
#mkdir /root/.aws !1952
#mv /scratch/config /root/.aws/ !1953
#chmod 400 /root/.aws/config !1954

fi !1955
fi !1956
!1957
aws s3 cp --recursive s3://$TEST_BUCKET/s3_stresstest/ . !1958
!1959
#Remember to keep the certificates valid and modify the script if the users number changes 1960
(The 0 is always for root) !…
cp x509up_u2904 /tmp/x509up_u0 !1961
chmod 400 /tmp/x509up_u0 !1962
mv x509up_u2904 /tmp/x509up_u2904 !1963
chmod 400 /tmp/x509up_u2904 !1964
export X509_USER_CERT=/tmp/x509up_u2904 !1965
export X509_USER_KEY=/tmp/x509up_u2904 !1966
rm -f /etc/grid-security/certificates/*.r0 !1967
voms-proxy-init -noregen -voms fermilab:/fermilab !1968
!1969
!1970
DEST_XRD=root://cmseos.fnal.gov//eos/uscms/store/user/timm !1971
DEST_SRM=srm://cmseos.fnal.gov:8443/srm/v2/server?SFN=/eos/uscms/store/user/timm !1972
#ID=$RANDOM !1973
echo "Upload test ID=$ID" > fermigrid_upload.log !1974
LIST="1 5 10 20" !1975
if [[$# -gt 0]]; then !1976

LIST="$@" !1977
fi !1978
if [[$# -eq 1 && $1 -eq 0]]; then !1979

kill $WAIT_ID !1980
exit !1981

fi !1982
srmmkdir $DEST_SRM/$ID !1983
wait $WAIT_ID !1984
for NUM in $LIST; do !1985

echo "Simultaneous upload of $NUM copies..." >>fermigrid_upload.log !1986

date >>fermigrid_upload.log !1987
for n in `seq $NUM`; do !1988

#srmcp -streams_num=5 file:///$TEST_FILE $DEST_SRM/$ID/$n.root >> command.log 2>&1 & !1989
xrdcp -f -v -N -S 4 /scratch/$TEST_FILE $DEST_XRD/$ID/$n.root >> command.log 2>&1 & !1990

done !1991
wait !1992
date >>fermigrid_upload.log !1993

!1994
echo -e "`srmls $DEST_SRM/$ID/ | grep -c 1073604531` out of $NUM successfully uploaded\n" 1995

>>fermigrid_upload.log !…
for n in `seq $NUM`; do !1996

srmrm $DEST_SRM/$ID/$n.root & !1997
done !1998
wait !1999

done !2000
srmrmdir $DEST_SRM/$ID/ !2001
!2002
exit !2003
!2004
----------- !2005
----------- !2006
----------- !2007
!2008
!2009
File: predictiondecisionengine/trunk/bin/Fermilab/run-tt_bar_gensim.sh !2010
#!/bin/bash !2011
!2012
shift !2013
shift !2014
!2015
mkdir -p /scratch/ !2016
mount /dev/xvdf /scratch/ !2017
cd /scratch !2018
!2019
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !2020

if [[-e /root/.local/lib/aws/bin]]; then !2021
export PATH=$PATH:/root/.local/lib/aws/bin !2022

else !2023

wget https://s3.amazonaws.com/aws-cli/awscli-bundle.zip !2024
unzip awscli-bundle.zip !2025
python awscli-bundle/install !2026
export PATH=$PATH:/root/.local/lib/aws/bin !2027
#mkdir /root/.aws !2028
#mv /scratch/config /root/.aws/ !2029
#chmod 400 /root/.aws/config !2030

fi !2031
fi !2032
!2033
aws s3 cp --recursive s3://$TEST_BUCKET/tt_bar_gensim/ . !2034
!2035
!2036
tar -zxf benchmark-2015.tgz !2037
!2038
groupadd cms_admin !2039
useradd -g cms_admin cms_admin !2040
!2041
ln -s /scratch/cms/ /tmp/cms !2042
chown -R cms_admin.cms_admin /tmp/cms/ !2043
!2044
if [[$# -eq 1 && $1 -eq 0]]; then !2045

exit !2046
fi !2047
cd /tmp/cms/ !2048
su cms_admin -c "sh benchmark-2015-gensim.sh 1">log !2049
mv results results.Single_core !2050
!2051
su cms_admin -c "sh benchmark-2015-gensim.sh">log !2052
mv results results.All_cores !2053
!2054
----------- !2055
----------- !2056
----------- !2057
!2058
!2059
File: predictiondecisionengine/trunk/bin/Fermilab/run-tt_bar_reco.sh !2060
#!/bin/bash !2061

!2062
groupadd cms_admin !2063
useradd -g cms_admin cms_admin !2064
!2065
mkdir -p /scratch/ !2066
mount /dev/xvdf /scratch/ !2067
cd /scratch !2068
!2069
if [[`which aws` = "" || `which aws | grep -F "no aws"` != ""]]; then !2070

if [[-e /root/.local/lib/aws/bin]]; then !2071
export PATH=$PATH:/root/.local/lib/aws/bin !2072

else !2073
wget https://s3.amazonaws.com/aws-cli/awscli-bundle.zip !2074
unzip awscli-bundle.zip !2075
python awscli-bundle/install !2076
export PATH=$PATH:/root/.local/lib/aws/bin !2077
#mkdir /root/.aws !2078
#mv /scratch/config /root/.aws/ !2079
#chmod 400 /root/.aws/config !2080

fi !2081
fi !2082
!2083
aws s3 cp s3://$TEST_BUCKET/tt_bar_reco/* ./ !2084
!2085
tar -zxf /scratch/benchmark-2015.tgz !2086
ln -s /scratch/tmp/cms/ /tmp/cms !2087
!2088
mv /scratch/ACEE623F-B1A8-E411-8672-0025905938B4.root /tmp/cms !2089
mv /scratch/ttbarGENSIM.root /tmp/cms !2090
mv /scratch/step2-50ns-4x-6400.root /tmp/cms !2091
mv -f /scratch/*.sh /tmp/cms !2092
!2093
mv /scratch/frontier-cache.tgz /tmp/cms !2094
cd /tmp/cms/ !2095
tar -zxf /tmp/cms/frontier-cache.tgz !2096
!2097
chown -R cms_admin.cms_admin /tmp/cms/ !2098
!2099

su cms_admin -c "sh start_x_benchmarks_reco.sh">>log & !2100
!2101
exit !2102
!2103
----------- !2104
----------- !2105
----------- !2106
!2107
!2108
File: predictiondecisionengine/trunk/bin/Fermilab/runparallel.sh !2109
#!/bin/bash !2110
!2111
cd ./hepspec2006/install !2112
mkdir ./results !2113
mv ./result ./results/Single_core !2114
!2115
. ./shrc !2116
COUNT=`grep -c "^processor" /proc/cpuinfo`; !2117
for i in `seq $COUNT`; do !2118

runspec --config=linux64-gcc_cern.cfg all_cpp & !2119
done !2120
wait !2121
!2122
mv ./result ./results/All_cores !2123
!2124
----------- !2125
----------- !2126
----------- !2127
!2128
!2129
File: predictiondecisionengine/trunk/bin/functions.sh !2130
#Description: Read the choice to a query and confront it with a list of correct answer 2131
limiting the numbers of checks !…
#Parameters: 1st parameter: number of attempts possible other parameter:List of correct 2132
answers !…
#Usage example (combined with make_list): make_list ... read_choice 3 `seq $LENGHT` !2133
function read_choice() !2134
{ !2135

local NUM=$1 !2136
shift !2137
CHOICES=("${@}") !2138
while "true"; do !2139

read CHOICE !2140
CHOICE=`echo $CHOICE | tr YESNO yesno` !2141
for CMD in ${CHOICES[@]}; do !2142

if [["$CHOICE" = "$CMD"]]; then !2143
return 0 !2144

fi !2145
done !2146
echo "Choice is out of range. Enter again :" !2147
let C_COUNT++ !2148
if [[$C_COUNT -ge $NUM]]; then !2149

echo "$NUM invalid choices. Exiting..." !2150
exit !2151

fi !2152
done !2153

} !2154
!2155
#Description: Make a numbered list out of an array or list of elements and return the number 2156
of elements in LENGHT !…
#Parameters: array or list of elements !2157
#Usage example: make_list "$LIST" or make_list "${array[@]}" !2158
function make_list() !2159
{ !2160

local C_COUNT=0 !2161
if [[`echo "$1" | wc -l` -gt 1]]; then !2162

while read -r line; do !2163
let C_COUNT++ !2164
echo -e "$C_COUNT-\t$line" !2165

done <<< "$1" !2166
else !2167

local array=("$@") !2168
for CMD in ${array[@]}; do !2169

let C_COUNT++ !2170
echo -e "$C_COUNT-\t$CMD" !2171

done !2172

fi !2173
LENGHT=$C_COUNT !2174

} !2175
!2176
#Description: Transfor a lsit of elements written on different lines into an array !2177
#Parameters: list of element !2178
#Usage example: array=($(list_to_array "$LIST")) !2179
function list_to_array() !2180
{ !2181

#echo "$@" !2182
local COUNT=0 !2183
local array !2184
while read -r line; do !2185

array[$COUNT]="$line" !2186
let COUNT++ !2187

done <<< $@ !2188
echo ${array[@]} !2189

} !2190
!2191
----------- !2192
----------- !2193
----------- !2194
!2195
!2196
File: predictiondecisionengine/trunk/bin/hepspec_crop_results.sh !2197
#!/bin/bash !2198
!2199
B_PATH=/home/crivella/Fermilab/Benchmarks/hepspec06 !2200
KEYS_PATH=/home/crivella/Fermilab !2201
!2202
#Adjust this section with your own format used to name instances and keys############ !2203
VMS_DATA=`aws ec2 describe-instances --filters Name=tag-value,Values=grassano` !2204
VMS=`echo "$VMS_DATA" | grep -F "grassano" | cut -d "\"" -f 4` !2205
VMS_KEYS=`echo "$VMS_DATA" | grep -F "_grassano" | cut -d "\"" -f 4` !2206
VMS_PUB_DNS=`echo "$VMS_DATA" | grep -F "PublicDnsName" | cut -d "\"" -f 4 | uniq` !2207
!2208
!2209
!2210

: 'MANUAL_CHOICES !2211
NUM_VMS=0 !2212
while read -r CMD; do !2213

let NUM_VMS++ !2214
echo -e "$NUM_VMS-\t$CMD" !2215

done <<< "$VMS" !2216
echo -e "100-\tALL" !2217
!2218
CHOICE=0 !2219
echo -e "\nChoose VM to get results from: Or type -1 to exit\nFor multiple selecion separate 2220
them with a space" !…
read CHOICES !2221
!2222
FLAG1=1 !2223
while [$FLAG1 -eq 1]; do !2224

FLAG1=0 !2225
ALL_SELECT=0 !2226
if [$CHOICES -eq -1]; then !2227

echo "Quitting...." !2228
exit !2229

fi !2230
for CHOICE in $CHOICES; do !2231

if [$CHOICE -gt $NUM_VMS] || [$CHOICE -lt 0] && [$CHOICE -ne 100]; then !2232
FLAG1=1 !2233
echo -e "Choice not available..." !2234

fi !2235
if [$CHOICE -eq 100]; then !2236

ALL_SELECT=1 !2237
fi !2238

done !2239
if [$FLAG1 -eq 1]; then !2240

echo -e "\nChoose VM to get results from: Or type -1 to exit" !2241
echo "For multiple selecion separate them with a space" !2242
read CHOICES !2243

fi !2244
done !2245
!2246
if [$ALL_SELECT -eq 0]; then !2247

for CHOICE in $CHOICES; do !2248
let CHOICE=CHOICE-1 !2249
VM=`echo "$VMS" | tail -n $(expr $NUM_VMS - $CHOICE) | head -n 1` !2250
VM_DNS=`echo "$VMS_PUB_DNS" | tail -n $(expr $NUM_VMS - $CHOICE) | head -n 1` !2251
VM_KEY=`echo "$VMS_KEYS" | tail -n $(expr $NUM_VMS - $CHOICE) | head -n 1` !2252

!2253
KEY=`find $KEYS_PATH -name "$VM_KEY.pem"` !2254
if ["$KEY" = ""]; then !2255

echo "You do not have the necessary key. Terminating..." !2256
exit !2257

fi !2258
!2259

mkdir $B_PATH/amazon/${VM:9:-8} !2260
scp -i $KEY -r root@$VM_DNS:/scratch/install/results/* $B_PATH/amazon/${VM:9:-8}/ !2261

done !2262
else !2263

for CHOICE in `seq $NUM_VMS`; do !2264
let CHOICE=CHOICE-1 !2265
VM=`echo "$VMS" | tail -n $(expr $NUM_VMS - $CHOICE) | head -n 1` !2266
VM_DNS=`echo "$VMS_PUB_DNS" | tail -n $(expr $NUM_VMS - $CHOICE) | head -n 1` !2267
VM_KEY=`echo "$VMS_KEYS" | tail -n $(expr $NUM_VMS - $CHOICE) | head -n 1` !2268
KEY=`find $KEYS_PATH -name "$VM_KEY.pem"` !2269
if ["$KEY" = ""]; then !2270

echo "You do not have the necessary key. Terminating..." !2271
exit !2272

fi !2273
!2274

mkdir $B_PATH/amazon/${VM:9:-8} !2275
scp -i $KEY -r root@$VM_DNS:/scratch/install/results/* $B_PATH/amazon/${VM:9:-8}/ !2276

done !2277
fi !2278
!2279
MANUAL_CHOICES' !2280
!2281
#AUTO_CHOICES !2282
!2283
echo "AutoChoices" !2284
#Amazon cropping !2285

CHOICES="" !2286
NUM_VMS=0 !2287
!2288
while read -r CMD; do !2289

let NUM_VMS++ !2290
#echo -e "$NUM_VMS-\t$CMD" !2291
if [[`echo "$CMD" | grep -F "-hepspec"` != ""]]; then !2292

CHOICES="$CHOICES $NUM_VMS" !2293
fi !2294

done <<< "$VMS" !2295
!2296
for CHOICE in $CHOICES; do !2297

VM=`echo "$VMS" | head -n $CHOICE | tail -n 1` !2298
VM_DNS=`echo "$VMS_PUB_DNS" | head -n $CHOICE | tail -n 1` !2299
VM_KEY=`echo "$VMS_KEYS" | head -n $CHOICE | tail -n 1` !2300

!2301
KEY=`find $KEYS_PATH -name "$VM_KEY.pem"` !2302
if ["$KEY" = ""]; then !2303

echo "You do not have the necessary key for $VM. Terminating..." !2304
exit !2305

fi !2306
!2307

mkdir $B_PATH/amazon/${VM:9:-12} !2308
scp -i $KEY -r root@$VM_DNS:/scratch/install/results/* $B_PATH/amazon/${VM:9:-12}/ !2309

done !2310
!2311
: ' !2312
CHOICES="fermicloud148" !2313
!2314
for CHOICE in $CHOICES; do !2315

mkdir $B_PATH/bare_metal/$CHOICE !2316
scp -r cms_admin@$CHOICE:./hepspec2006/install/results/* $B_PATH/bare_metal/$CHOICE/ !2317

done !2318
' !2319
!2320
RESULTS=`find $B_PATH -name "lock.CPU2006" | sort` !2321
while read -r CMD; do !2322

RES_PATH=`dirname $CMD` !2323

N_CORE=`find $RES_PATH -name "CPU2006*.log" | wc -l` !2324
for COUNT in `seq $N_CORE`; do !2325

if [$COUNT -eq 1]; then !2326
echo "CORE$COUNT" > $RES_PATH/crop_core.txt !2327

else !2328
echo -e "\nCORE$COUNT" >> $RES_PATH/crop_core.txt !2329

fi !2330
cat $RES_PATH/CFP2006.`printf %03d $COUNT`.ref.txt | grep -F " *" | sort | uniq >> 2331

$RES_PATH/crop_core.txt !…
cat $RES_PATH/CINT2006.`printf %03d $COUNT`.ref.txt | grep -F " *" | sort | uniq >> 2332

$RES_PATH/crop_core.txt !…
done !2333

done <<< "$RESULTS" !2334
!2335
----------- !2336
----------- !2337
----------- !2338
!2339
!2340
File: predictiondecisionengine/trunk/bin/make_diff_sum.sh !2341
#!/bin/bash !2342
. /home/crivella/bin/functions.sh !2343
!2344
RES_PATH=/home/crivella/Fermilab/Benchmarks/s3_stresstest_u/$1 !2345
FILE="diff_sum_`date +%F`.log" !2346
RESULTS=`find $RES_PATH -name "diff.log" | sort -n` !2347
while read -r line; do !2348

echo "$line" >> $RES_PATH/$FILE !2349
LIST=`cat $line | grep "Diff for" | cut -d " " -f 1 | cut -d " " -f 3 | sort -n | uniq` !2350
for CMD in $LIST; do !2351

echo -ne "Sum of $CMD simultaneous transfer throughput: \t">> $RES_PATH/$FILE !2352
LINES=`cat $line | grep "Diff for $CMD is"` !2353
INTEGER=0 !2354
DECIMAL=0 !2355
while read -r line2; do !2356

VAR=`echo "$line2" | cut -d " " -f 5 | cut -d " " -f 1` !2357
INT=`echo $VAR | cut -d "." -f 1` !2358
if [[-z "$INT"]]; then !2359

INT=0 !2360
fi !2361
INTEGER=`echo $INTEGER+$INT | bc -l` !2362
FLOAT=`echo $VAR | cut -d "." -f 2` !2363
DECIMAL=`echo $DECIMAL+$FLOAT | bc -l` !2364
#echo "$INT.$FLOAT -> $INTEGER.$DECIMAL" !2365

done <<< "$LINES" !2366
#echo ### !2367
while [[$DECIMAL -ge 1000]]; do !2368

let DECIMAL-=1000 !2369
let INTEGER+=1 !2370

done !2371
echo "$INTEGER.`printf %03d $DECIMAL` GB/s">> $RES_PATH/$FILE !2372

done !2373
echo -e "\n" >> $RES_PATH/$FILE !2374

done <<< "$RESULTS" !2375
exit !2376
!2377
----------- !2378
----------- !2379
----------- !2380
!2381
!2382
File: predictiondecisionengine/trunk/bin/README_aws_launch_benchmark !2383
README for the aws_launch_benchmark.sh script !2384
!2385
##2386
################################### !…
1. Index !2387

1- Index !2388
2- Required packages !2389
3- Useful variables !2390
4- Optional parameters !2391
5- Priorities !2392
6- Resume mode !2393
7- Adding new benchmarks to the script !2394

!2395
##2396

################################### !2396…
2. Required packages !2397

In order to work,this script will check for the presence of the aws and nmap packages. If 2398
one of them is missing, the sriptwill !…

terminate, asking the user to install them before proceding. !2399
!2400
##2401
################################### !…
3. Useful variables !2402

FILES_PATH Path for the directory containing the run-benchmark_name.sh files !2403
KEYS_PATH Path for the directory containing the aws keys (.pem) !2404
TMP_PATH Path for the directory to store the tmp files !2405

!2406
benchmark Name of the choesen benchmark to execute !2407
vol_size The size of the extra-volumes to create in order to make the specified 2408

benchmark work !…
ROLE Role to attach at launch to the instances !2409
PARAM Additional parameters to pass to the run-$benchmark.sh script !2410
AMI_ID ID of the AMI to use for the instances !2411
SG_ID ID of the Security group to use for the instances !2412
KEY Name of the KEY (without .pem) to use for the instances !2413

!2414
benchmarks Array containing all the benchmark that the script can run (The indexes need 2415

to be matching with those of the !…
next arrays) !2416

req_vol_size Array containing the sizes of the extra-volumes for each benchmarks !2417
roles Array containing the role that the instances will need to execute the 2418

benchmark. If a value is null (ex: ("" "....")) !…
then the default "AllowS3_Download" willbe selected (required to download 2419

benchmark files from S3) !…
parameters Array containing the default parameters to use with each benchmark. They can 2420

be overwritten at launc using the -p !…
optional parameter (See more in paragraph 5) !2421

!2422
##2423
################################### !…
4. Optional parameters !2424

-a Specify the ID of the AMI the script will try to use !2425

-s Specify the ID of the Security Group the script will try to use !2426
-k Specify the Name of the Key Pair the script will try to use !2427
-i Specify the kind and amount of instances to benchmark !2428

Example: aws_launch_benchmark.sh -i "3:c3.2xlarge 10:t2.micro 1:m3.4xlarge" !2429
This command will use the later specified benchmark on 3 c3.2xlarge instances, 10 2430

t2.micro and 1 m3.4xlarge !…
-p Set optional parameters to pass to the "run-name_of_benchmark.sh" executed on the VM !2431

Example: aws_launch_benchmark.sh -p "1 10 100" !2432
For bandwidth benchmarks, this will make them do 1 simultaneous up/download of 2433

files, followed by 10 simultaneous and !…
than 100 simultaneous !2434

-z Specify a profile to use, so to operate in different zone than the default one !2435
The name of the profile should be the same as the zone they are meant for !2436

-r Enable the resume mode (See paragraph 6 for more instruction) !2437
!2438
##2439
################################### !…
5. Priorities !2440

To specify aws related parameters (AMI ID, KEY, SG_ID, Param, ZONE) there are 3 level of 2441
priorites in this script. !…

The default values will be the ones specified in the script and will be used unless 2442
optional parameteres are being used. In this case !…

they will override the default values. !2443
The highest level of priorities is based on a check with aws. If the values in use are not 2444

found on aws, the script will prompt the !…
user and ask if he wants to see a list of the availables option on aws to choose from, or 2445

exit !…
!2446
!2447
##2448
################################### !…
6. Resume mode !2449

The resume mode works only if launching one kind of instances (example: only c3.2xlarge or 2450
only m3.medium ...). !…

Also, the benchmark the user is launching has to be the same that was previously launched 2451
on the instances he is trying to resume. !…

Any other use could causes bug to arise !2452
When the resume mode is enabled, the script will look for a tmp file in the folder 2453

$TMP_PATH/benchmark_name and read it if found or !2453…
exit otherwise. !2454
This file is generated automatically by a previous run of the script, but can be manually 2455

edited if needed !…
The format ofthe file has to be !2456

NUM_VMS:INSTANCE_TYPE:INSTANCE_ID:PUB_DNS:KEY (NUM_VMS start from 0) !2457
example:2458

0:m3.medium:i-d3ea6708:ec2-52-27-10-197.us-west-2.compute.amazonaws.com:mykey !…
1:m3.medium:i-d4ea670f:ec2-52-88-72-102.us-west-2.compute.amazonaws.com:mykey !2459

The data present in the file will be stored in the same arrays used by the script to store 2460
the data of newly created instances, and !…

will act as the starting point of the other parts of the script depending on the selected 2461
choice that the user will be prompted to take while in resume mode. !…

This choice can be either to resume the script from "Volume creation" or from "Start 2462
Benchmark": !…

Volume creation After creating the missing instances, the script will create a 2463
new volume for all instances, included !…

the one in the tmp file. This function is meant to be used, if the script 2464
for some reason got !…

interrupted before the extra-volume was created. !2465
Start Benchmark After creating the missing instances, the script will create a 2466

new volume only for the newly started !…
instances. This is meant for launching 2 successive benchmark, where one 2467

is the extended version of !…
the previous. !2468
For example. After launching a benchmark on 5 c3.2xlarge instances, the 2469

user wants to launch the same !…
benchmark, but on 10 c3.2xlarges instances. The normal way would be to 2470

reuse the 5 instances !…
previously launcher, and this can be accomplished with the resume mode !2471

!2472
##2473
################################### !…
7. Adding new benchmarks to the script !2474

1- Modify the benchmarks, req_vol_size, roles, parameters array in the script adding the 2475
name of the benchmark in benchmarks, !…

the size of the extra-volume needed for it to run in req_vol_size, th name of the role 2476
the benchmark will use in roles (use "" !…

to set it to the default one), and the default parameter for that benchmark in 2477
parameters. !…

Using 0 in req_vol_size will prompt a dynamic allocation of space based on the 2478
parameters. For example while executing a !…

bandwidth download test, the req_vol_size will depend on the size of the files and 2479
their number. The script consider the !…

default size for the files of 1GB, and will thus use the sum of the parameters+3 as 2480
the vol_size !…

2- Load all the required files for your benchmark on s3 !2481
3- Modify the section of the script that checks if you have an s3 folder in you bucket 2482

for the benchmark in case you don't want !…
it to have the same name as the benchmark (example: different benchmarks share the 2483

same files) !…
4- Create a run-benchmark_name.sh script and put it in the directory conciding with the 2484

var FILES_PATH !…
This script will be executed as root from the /root/ directory and will need to make 2485

the file sys for the extra-disk and mount !…
it. It will need afterwards to download the required files from s3 and place them 2486

where needed, and afterwards run all the !…
commands needed to execute the benchmarks. !2487
See the already writte run-*.sh files for examples !2488

Note: The first parameters passed from the aws_launch_benchmark.sh script to the 2489
run-*.sh will always be the time right before going !…

into the Start Benchmark phase and the number identifying the job. The first is used 2490
to syncronize bandwidth benchmarks. !…

If the run-*.sh has other parameters, the user will need to take this into account. 2491
Using the "shift" command will shift the !…

parameter indexes from n to n-1, deleting the $1. This can be a useful way to ignore 2492
the the first 2 default parameters, !…

enabling a easyier use of the $@ to invoke the list of user defined parameters !2493
!2494

!2495
----------- !2496
----------- !2497
----------- !2498
!2499
!2500
File: predictiondecisionengine/trunk/bin/s3_manager.sh !2501

#!/bin/bash !2502
!2503
#D_PATH=$HOME/s3_download !2504
#if [[! -d $D_PATH]]; then !2505
echo "The Download directory doesn't exist. Do you wish to create it on the default 2506
path?(y/n)" !…
#else !2507
CHOICE="bypass" !2508
#fi !2509
!2510
A_PATH=`find $HOME -name "s3_download_path" 2>/dev/null` !2511
D_PATH=`dirname $A_PATH` !2512
if [["$D_PATH" != ""]]; then !2513

echo "Download path found as $D_PATH" !2514
CHOICE="bypass" !2515

else !2516
echo "The Download directory doesn't exist. Do you wish to create it on the default 2517

path?(y/n)" !…
D_PATH=$HOME/s3_download !2518

fi !2519
!2520
!2521
COUNT=0 !2522
while [["$CHOICE" != "y" && "$CHOICE" != "n" && "$CHOICE" != "bypass"]]; do !2523

read CHOICE !2524
if [["$CHOICE" = "y"]]; then !2525

if mkdir -p $D_PATH; then !2526
: !2527

else !2528
echo "Cannot create the directory. Exiting..." !2529
exit !2530

fi !2531
elif [["$CHOICE" = "n"]]; then !2532

echo "Do you wish to specify a different path (y) or exit (n)?" !2533
read CHOICE2 !2534
if [["$CHOICE2" = "y"]]; then !2535

COUNT2=0 !2536
CHECK=0 !2537

while [[$CHECK -eq 0]]; do !2538
echo "Insert the path: " !2539
read D_PATH !2540
if mkdir -p $D_PATH; then !2541

CHECK=1 !2542
else !2543

let COUNT2++ !2544
echo "Can't create the folder(try number $COUNT2). Enter path again" !2545

fi !2546
if [[$COUNT2 -ge 3]]; then !2547

echo "3 invalid choices. Exiting..." !2548
fi !2549

done !2550
!2551

else !2552
exit !2553

fi !2554
else !2555

let COUNT++ !2556
echo "Choise is not valid. Enter it again" !2557

fi !2558
if [[$COUNT -ge 3]]; then !2559

echo "3 invalid choices. Exiting..." !2560
exit !2561

fi !2562
!2563
done !2564
if [[-d $D_PATH]]; then !2565

echo "$D_PATH" > $D_PATH/s3_download_path !2566
fi !2567
!2568
echo -e "Select the operaion to perform:\n1- Download files\n2- Upload files\n10-exit" !2569
read CHOICE !2570
if [[$CHOICE -eq 10]]; then !2571

exit !2572
fi !2573
!2574
USER=grassano !2575

BUCKETS_LIST=`aws s3api list-buckets | grep Name | cut -d "\"" -f 4` !2576
COUNT=0 !2577
BUCKETS[0]=`echo "$BUCKETS_LIST" | wc -l` !2578
while read -r CMD; do !2579

let COUNT++ !2580
BUCKETS[$COUNT]=$CMD !2581
echo -e "$COUNT-\t$CMD" !2582

done <<< "$BUCKETS_LIST" !2583
echo "Choose the bucket to perform the action on:" !2584
CHOICE2=0 !2585
COUNT=0 !2586
while [[$CHOICE2 -lt 1 || $CHOICE2 -gt ${BUCKETS[0]}]]; do !2587

let COUNT++ !2588
if [[$COUNT -ge 4]]; then !2589

echo "3 invalid choices. Exiting..." !2590
fi !2591
read CHOICE2 !2592
if [[$CHOICE2 -lt 1 || $CHOICE2 -gt ${BUCKETS[0]}]]; then !2593

echo "Choice out of range. Enter again:" !2594
fi !2595

done !2596
!2597
if [[$CHOICE -eq 1]]; then !2598

OBJ_DATA=`aws s3api list-objects --bucket ${BUCKETS[$CHOICE2]}` !2599
OBJ_LIST=`echo "$OBJ_DATA" | grep Key | cut -d "\"" -f 4` !2600
COUNT=0 !2601
OBJ[0]=`echo "$OBJ_LIST" | wc -l` !2602
while read -r CMD; do !2603

let COUNT++ !2604
OBJ[$COUNT]=$CMD !2605
echo -e "$COUNT-\t$CMD" !2606

done <<< "$OBJ_LIST" !2607
echo "Choose the objects you want to download (num1 num2 ...)" !2608
read DOWNLOADS !2609
for CMD in $DOWNLOADS; do !2610

if [[$CMD -ge 1 && $CMD -le ${OBJ[0]}]]; then !2611
echo "Downloading ${OBJ[$CMD]}..." !2612
aws s3 cp s3://${BUCKETS[$CHOICE2]}/${OBJ[$CMD]} $D_PATH !2613

else !2614
echo "$CMD is an invalid selection. Ignoring it..." !2615

fi !2616
done !2617

elif [[$CHOICE -eq 2]]; then !2618
if [[$# -gt 0]]; then !2619

echo "Taking parameter from function input" !2620
UPLOADS=$@ !2621

else !2622
echo "Inser files to upload (name1 name2 ...)" !2623
read UPLOADS !2624

fi !2625
for CMD in $UPLOADS; do !2626

if [[-f $CMD]]; then !2627
echo "Uploading $CMD" !2628
aws s3 cp $CMD s3://${BUCKETS[$CHOICE2]}/ !2629

else !2630
echo "$CMD is not a regular file. Ignoring it..." !2631

fi !2632
done !2633

fi !2634
!2635
exit !2636
!2637
----------- !2638
----------- !2639
----------- !2640
!2641
!2642

2643

File: monitoringaccountingbilling/trunk/src/gratia/awsvm/aws-gratia-probe-fix !1
#!/usr/bin/env python !2
import gratia.common.Gratia as Gratia !3
import gratia.common.GratiaCore as GratiaCore !4
import gratia.common.GratiaWrapper as GratiaWrapper !5
from gratia.common.Gratia import DebugPrint !6
import boto3; !7
from pprint import pprint; !8
import datetime !9
from time import mktime !10
import time !11
import sys !12
from gratia.awsvm.spot_price import spot_price !13
from gratia.awsvm.cpuutil import cpuUtilization !14
from gratia.awsvm.inst_hardware import insthardware !15
from gratia.awsvm.get_account_id import get_account_id !16
import os !17
!18
class Awsgratiaprobe: !19

def __init__(self): !20
GratiaCore.Config.set_DebugLevel(5) !21

 !22
!23
def process(self): !24

ec2=boto3.client('ec2',region_name='us-west-2') !25
 mygacid=get_account_id() !26
 owneracct=mygacid.get_id() !27

response = ec2.describe_instances() !28
#pprint(response) !29
resv=response['Reservations'] !30
for reservation in resv: !31

#pprint(reservation) !32
instances=reservation['Instances'] !33
for instance in instances: !34

#pprint(instance) !35
print instance['InstanceId'] !36
#print instance['InstanceType'] !37
r = Gratia.UsageRecord() !38

user="aws account user" !39
project="aws-no project name given" !40
voname="fermilab" !41
try: !42

tags=instance['Tags'] !43
print "the tags are" !44
for tag in tags: !45

print tag['Key'], !46
print tag['Value'] !47

for tag in tags: !48
 if tag['Key'].lower() == 'user'.lower(): !49
 user=tag['Value'] !50

for tag in tags: !51
 if tag['Key'].lower() == 'name'.lower(): !52
 r.JobName(tag['Value']) !53

for tag in tags: !54
 if tag['Key'].lower() == 'project'.lower(): !55
 project=tag['Value'] !56
voname=tag['Value'] !57

for tag in tags: !58
if tag['Key'].lower() == 'vo'.lower() or tag['Key'].lower() == 59

'voname'.lower(): !…
voname=tag['Value'] !60

except KeyError: !61
 print 'no tags' !62

r.LocalUserId(user) !63
 r.GlobalUserId(owneracct) !64

r.ProjectName(project) !65
r.VOName(voname) !66

 r.ReportableVOName(voname) !67
 #Public Ip address is retrieved if instance is running" !68

try: !69
ipaddr=instance['PublicIpAddress'] !70
r.MachineName(instance['PublicIpAddress'],instance['ImageId']) !71

except KeyError: !72
r.MachineName("no Public ip as instance has been stopped",instance['ImageId']) !73

!74
!75

 r.LocalJobId(instance['InstanceId']) !76
 r.GlobalJobId(instance['InstanceId']+"#"+repr(time.time())) !77

#print 'hello1' !78
try: !79

for tag in tags: !80
if tag['Key'].lower() == 'name'.lower(): !81

r.JobName(tag['Value']) !82
except KeyError: !83

 print 'no tags' !84
#status,description=recs[i].getStatus() !85
!86
state=instance['State'] !87
#print state['Name'] !88
status=1 !89
if state['Name']=="running": !90

print status !91
status=0 !92

else: !93
status=1 !94

#print 'hello' !95
#print status !96
pprint(r) !97
#print instance['StateTransitionReason'] !98
description=instance['StateTransitionReason'] !99

 #print description !100
r.Status(status,description) !101
!102

r.ProcessorsDescription(instance['InstanceType'])!103
#r.MachineNameDescription(instance['ImageId']) !104
!105
try: !106

ipaddr=instance['PrivateIpAddress'] !107
108

r.Host(instance['PrivateIpAddress'],False,instance['Placement']['AvailabilityZone']) !…
109

r.SubmitHost(instance['PrivateIpAddress'],instance['Placement']['AvailabilityZone']) !…
except KeyError: !110

r.SubmitHost("no Private ip as instance has been terminated") !111

#print 'setting site name' !112
!113
#GratiaCore.Config.setSiteName('aws'+instance['Placement']['AvailabilityZone']) !114
#print 'done setting' !115
#r.ReportedSiteName('aws'+instance['Placement']['AvailabilityZone']) !116
r.ResourceType('aws') !117
r.Njobs(1,"The no of jobs running at a time") !118

 r.NodeCount(1) # default to total !119
try: !120

hardwdet=GratiaCore.Config.getConfigAttribute("HardwareDetails") !121
except Exception as e: !122

print "The File for hardware details is not present. Pls check config file 123
Hardware details value." !…

else: !124
hardwdet="/usr/share/gratia/awsvm/hardwareinst" !125

instdet=insthardware(hardwdet) !126
types=instdet.gettypedetails() !127
pprint(types) !128
processor='1' !129
memory='' !130
price=0.0 !131
for t in types: !132

 print t['instance-type'], instance['InstanceType'] !133
if t['instance-type'] == instance['InstanceType']: !134

pprint (t) !135
processor=t['vcpu'] !136
memory=t['ram'] !137
price=t['price'] !138

 print processor,memory,price !139
#print memory," the value of memory" !140
cpu=float(processor) !141

 print cpu !142
 r.Processors(int(cpu),0,"total",instance['InstanceType']) !143
 r.Memory(float(memory)) !144

chargedesc="" !145
 # Spot price is retrieved using instance id as the charge per hour of that 146

instance in the last hour !…
#print instance['InstanceId'] !147

if "SpotInstanceRequestId" in instance.keys(): !148
sp=spot_price.spot_price() !149
value=sp.get_price(instance['InstanceId']) !150
#print value !151
price=value !152
chargedesc="The instance is a on-demand instance hence charge is fixed per 153

hour" !…
if status==1: !154

price=0 !155
chargedesc="The spot price charged in last hour corresponding to launch time" !156
r.Charge(str(price),"$","$/instance hr",chargedesc) !157
The Time period for which the spot price and other values are calculated is noted 158

down !…
launchtime=instance['LaunchTime'] !159
#print launchtime.hour !160
#print 'hello3' !161
minu=launchtime.minute !162
#print minu !163
!164
currtime=time.time() !165

!166
!167

EndTime=datetime.datetime.now() !168
#print type(EndTime) !169
EndTime=EndTime.replace(minute=minu) !170
StartTime=EndTime.replace(hour=(EndTime.hour-1)) !171
#print StartTime !172
#print EndTime !173
#print 'starttime' !174
t=StartTime.date() !175
#print GratiaCore.TimeToString(time.mktime(t.timetuple())) !176
#print 'convert' !177
stime=time.mktime(StartTime.timetuple()) !178

 r.StartTime(stime) !179
 !180
 et=EndTime.date() !181

etime=time.mktime(EndTime.timetuple()) !182
r.EndTime(etime) !183

#print 'hello123' !184
#print etime-stime," the diff" !185

 r.WallDuration(etime-stime) !186
Cpu=cpuUtilization() !187
aver=Cpu.getUtilPercent(instance['InstanceId']) !188
#print aver," average in percentage" !189
#print type(aver) !190
#print type(cpu) !191
if aver is None: !192

cpuUtil=0.0 !193
print "The CPU Utilization value is NULL as the instance was not running in the 194

last hour" !…
r.CpuDuration(0,'user') !195

else: !196
cpuUtil=aver !197
r.CpuDuration((etime-stime)*float(aver)*cpu/100,'user') !198

r.CpuDuration(0,'system') !199
 r.ResourceType("AWSVM") !200

r.AdditionalInfo("Version","1.0") !201
!202

#print r !203
print 'done' !204
Gratia.Send(r) !205
!206

!207
!208
!209
if __name__ == '__main__': !210

try: !211
 Gratia.Initialize('/etc/gratia/awsvm/ProbeConfig') !212

GratiaWrapper.CheckPreconditions() !213
vmProbe=Awsgratiaprobe() !214
Filelock="filelock" !215
conf=GratiaCore.Config !216
duplicatelock=conf.getConfigAttribute("ExemptDuplicates") !217
filelock=conf.getConfigAttribute("DuplicateFilelock") !218
if duplicatelock == "True": !219

 if os.path.isfile(Filelock): !220

 fl=open(Filelock, 'r+') !221
 date=datetime.datetime.now() !222
 line=fl.readline() !223
 print line !224
 prevdate = datetime.datetime.strptime(line, "%Y-%m-%d %H:%M:%S.%f") !225
 print prevdate !226
 currtime=time.mktime(date.timetuple()) !227
 prevtime=time.mktime(prevdate.timetuple()) !228
 diff=currtime-prevtime !229

 print diff !230
 if diff>=3599.0: !231
 fl.seek(0, 0) !232

 fl.truncate() !233
 fl.write(str(date)); !234
 t = os.path.getmtime(Filelock) !235
 print t !236
 print datetime.datetime.fromtimestamp(t) !237
 fl.close() !238

vmProbe.process() !239
 else: !240

 print "hour is not over yet" !241
 fl.close() !242
else: !243
 fl=open(Filelock,'w+') !244
 date=str(datetime.datetime.now()) !245
 fl.write(date); !246
 fl.close() !247

vmProbe.process() !248
else: !249

vmProbe.process() !250
except Exception, e: !251
 print >> sys.stderr, str(e) !252
 sys.exit(1) !253
sys.exit(0) !254

!255
!256
----------- !257
----------- !258

----------- !259
!260
!261
File: monitoringaccountingbilling/trunk/src/gratia/awsvm/aws-gratia-probe-multi-fix !262
#!/usr/bin/env python !263
import gratia.common.Gratia as Gratia !264
import gratia.common.GratiaCore as GratiaCore !265
import gratia.common.GratiaWrapper as GratiaWrapper !266
from gratia.common.Gratia import DebugPrint !267
import boto3; !268
from boto3.session import Session !269
from pprint import pprint; !270
import datetime !271
from time import mktime !272
import time !273
import sys !274
from gratia.awsvm.spot_price import spot_price !275
from gratia.awsvm.cpuutil import cpuUtilization !276
from gratia.awsvm.inst_hardware import insthardware !277
from gratia.awsvm.get_account_id import get_account_id !278
import os !279
!280
class Awsgratiaprobe: !281

def __init__(self): !282
GratiaCore.Config.set_DebugLevel(5) !283

 !284
!285
def process(self): !286

for account in ('rnd', 'cms', 'nova', 'fermilab'): !287
session = Session(profile_name = account) !288
for region in ('us-west-2','us-west-1','us-east-1'): !289

ec2=boto3.client('ec2',region_name=region) !290
 mygacid=get_account_id() !291
 owneracct=mygacid.get_id() !292

print owneracct !293
response = ec2.describe_instances() !294
#pprint(response) !295
resv=response['Reservations'] !296

for reservation in resv: !297
#pprint(reservation) !298
instances=reservation['Instances'] !299
for instance in instances: !300

#pprint(instance) !301
print instance['InstanceId'] !302
#print instance['InstanceType'] !303
r = Gratia.UsageRecord() !304

 # set the defaults !305
user="aws account user" !306
project="aws-no project name given" !307
voname="fermilab" !308
try: !309

tags=instance['Tags'] !310
print "the tags are" !311
for tag in tags: !312

print tag['Key'], !313
print tag['Value'] !314

for tag in tags: !315
 if tag['Key'].lower() == 'user'.lower(): !316
 user=tag['Value'] !317

for tag in tags: !318
 if tag['Key'].lower() == 'name'.lower(): !319
 r.JobName(tag['Value']) !320

for tag in tags: !321
 if tag['Key'].lower() == 'project'.lower(): !322
 project=tag['Value'] !323

for tag in tags: !324
if tag['Key'].lower() == 'vo'.lower() or tag['Key'].lower() == 325

'voname'.lower(): !…
voname=tag['Value'] !326

except KeyError: !327
 print 'no tags' !328

r.LocalUserId(user) !329
 r.GlobalUsername(owneracct) !330

r.ProjectName(project) !331
r.VOName(voname) !332

 r.ReportableVOName(voname) !333

 #Public Ip address is retrieved if instance is running" !334
try: !335

ipaddr=instance['PublicIpAddress'] !336
r.MachineName(instance['PublicIpAddress'],instance['ImageId']) !337

except KeyError: !338
r.MachineName("no Public ip as instance has been 339

stopped",instance['ImageId']) !…
!340
!341

 r.LocalJobId(instance['InstanceId']) !342
 r.GlobalJobId(instance['InstanceId']+"#"+repr(time.time())) !343

#print 'hello1' !344
try: !345

for tag in tags: !346
if tag['Key'].lower() == 'name'.lower(): !347

r.JobName(tag['Value']) !348
except KeyError: !349

 print 'no tags' !350
#status,description=recs[i].getStatus() !351

!352
state=instance['State'] !353
#print state['Name'] !354
#set the default status !355
status=1 !356
if state['Name']=="running": !357

print status !358
status=0 !359

else: !360
status=1 !361

#print 'hello' !362
#print status !363
pprint(r) !364
#print instance['StateTransitionReason'] !365
description=instance['StateTransitionReason'] !366

 #print description !367
r.Status(status,description) !368

!369
r.ProcessorsDescription(instance['InstanceType'])!370

#r.MachineNameDescription(instance['ImageId']) !371
!372

try: !373
ipaddr=instance['PrivateIpAddress'] !374

375
r.Host(instance['PrivateIpAddress'],False,instance['Placement']['AvailabilityZone']) !…

376
r.SubmitHost(instance['PrivateIpAddress'],instance['Placement']['AvailabilityZone']) !…

except KeyError: !377
r.SubmitHost("no Private ip as instance has been terminated") !378

#print 'setting site name' !379
!380

381
#GratiaCore.Config.setSiteName('aws'+instance['Placement']['AvailabilityZone']) !…

#print 'done setting' !382
#r.ReportedSiteName('aws'+instance['Placement']['AvailabilityZone']) !383
r.ResourceType('aws') !384
r.Njobs(1,"The no of jobs running at a time") !385

 r.NodeCount(1) # default to total !386
try: !387

hardwdet=GratiaCore.Config.getConfigAttribute("HardwareDetails") !388
except Exception as e: !389

print "The File for hardware details is not present. Pls check config 390
file Hardware details value." !…

else: !391
hardwdet="/usr/share/gratia/awsvm/hardwareinst" !392

instdet=insthardware(hardwdet) !393
types=instdet.gettypedetails() !394

pprint(types) !395
processor='1' !396
memory='' !397
price=0.0 !398
for t in types: !399

print t['instance-type'], instance['InstanceType'] !400
if t['instance-type'] == instance['InstanceType']: !401

pprint (t)!402
processor=t['vcpu'] !403
memory=t['ram'] !404

price=t['price'] !405
print processor,memory,price !406

#print memory," the value of memory" !407
cpu=float(processor) !408

print cpu !409
 r.Processors(int(cpu),0,"total",instance['InstanceType']) !410
 r.Memory(float(memory)) !411

chargedesc="" !412
 # Spot price is retrieved using instance id as the charge 413

per hour of that instance in the last hour !…
#print instance['InstanceId'] !414

if "SpotInstanceRequestId" in instance.keys(): !415
sp=spot_price.spot_price() !416
value=sp.get_price(instance['InstanceId']) !417
#print value !418
price=value !419
chargedesc="The instance is a on-demand instance hence charge is fixed 420

per hour" !…
if status==1: !421

price=0 !422
chargedesc="The spot price charged in last hour corresponding to launch 423

time" !…
r.Charge(str(price),"$","$/instance hr",chargedesc) !424
The Time period for which the spot price and other values are calculated 425

is noted down !…
launchtime=instance['LaunchTime'] !426
#print launchtime.hour !427
minu=launchtime.minute !428
#print minu !429

!430
currtime=time.time() !431

!432
!433

EndTime=datetime.datetime.now() !434
EndTime=EndTime.replace(minute=minu) !435
StartTime=EndTime.replace(hour=(EndTime.hour-1)) !436
#print 'starttime' !437
t=StartTime.date() !438

#print GratiaCore.TimeToString(time.mktime(t.timetuple())) !439
#print 'convert' !440
stime=time.mktime(StartTime.timetuple()) !441

 r.StartTime(stime) !442
 !443
 et=EndTime.date() !444

etime=time.mktime(EndTime.timetuple()) !445
r.EndTime(etime) !446

 r.WallDuration(etime-stime) !447
Cpu=cpuUtilization() !448
aver=Cpu.getUtilPercent(instance['InstanceId']) !449
#print aver," average in percentage" !450
#print type(aver) !451
#print type(cpu) !452
if aver is None: !453

cpuUtil=0.0 !454
print "The CPU Utilization value is NULL as the instance was not 455

running in the last hour" !…
r.CpuDuration(0,'user') !456

else: !457
cpuUtil=aver !458
r.CpuDuration((etime-stime)*float(aver)*cpu/100,'user') !459
r.CpuDuration(0,'system') !460

 r.ResourceType("AWSVM") !461
r.AdditionalInfo("Version","1.0") !462

!463
#print r !464
print 'done' !465
Gratia.Send(r) !466

!467
!468

!469
!470
if __name__ == '__main__': !471

try: !472
 Gratia.Initialize('/etc/gratia/awsvm/ProbeConfig') !473

GratiaWrapper.CheckPreconditions() !474
vmProbe=Awsgratiaprobe() !475

Filelock="filelock" !476
conf=GratiaCore.Config !477
duplicatelock=conf.getConfigAttribute("ExemptDuplicates") !478
filelock=conf.getConfigAttribute("DuplicateFilelock") !479
if duplicatelock == "True": !480

 if os.path.isfile(Filelock): !481
 fl=open(Filelock, 'r+') !482

 date=datetime.datetime.now() !483
 line=fl.readline() !484
 print line !485
 prevdate = datetime.datetime.strptime(line, "%Y-%m-%d %H:%M:%S.%f") !486
 print prevdate !487
 currtime=time.mktime(date.timetuple()) !488
 prevtime=time.mktime(prevdate.timetuple()) !489
 diff=currtime-prevtime !490

 print diff !491
 if diff>=3599.0: !492
 fl.seek(0, 0) !493

 fl.truncate() !494
 fl.write(str(date)); !495
 t = os.path.getmtime(Filelock) !496
 print t !497
 print datetime.datetime.fromtimestamp(t) !498
 fl.close() !499

vmProbe.process() !500
 else: !501

 print "hour is not over yet" !502
 fl.close() !503
else: !504
 fl=open(Filelock,'w+') !505
 date=str(datetime.datetime.now()) !506
 fl.write(date); !507
 fl.close() !508

vmProbe.process() !509
else: !510

vmProbe.process() !511
except Exception, e: !512
 print >> sys.stderr, str(e) !513

 sys.exit(1) !514
sys.exit(0) !515

!516
!517
----------- !518
----------- !519
----------- !520
!521
!522
File: monitoringaccountingbilling/trunk/src/gratia/awsvm/awsvm_probe.cron.sh !523
python /usr/share/gratia/awsvm/aws-gratia-probe !524
!525
----------- !526
----------- !527
----------- !528
!529
!530
File: monitoringaccountingbilling/trunk/src/gratia/awsvm/hardwareinst !531
instance-type vcpu ram price !532
m3.medium 1 3.75 0.067 !533
m3.large 2 7.5 0.133 !534
t2.micro 1 1 0.013 !535
m3.xlarge 4 15 0.266 !536
t2.small 1 2 0.026 !537
t2.medium 2 4 0.052 !538
t2.large 2 8 0.104 !539
m4.large 2 8 0.126 !540
m4.2xlarge 8 32 0.504 !541
m4.xlarge 4 16 0.252 !542
m4.4xlarge 16 64 1.008 !543
m4.10xlarge 40 160 2.52 !544
m3.2xlarge 8 30 0.532 !545
c4.large 2 3.75 0.11 !546
c4.xlarge 4 7.5 0.22 !547
c4.2xlarge 8 15 0.441 !548
c4.4xlarge 16 30 0.882 !549
c4.8xlarge 36 60 1.763 !550
c3.large 2 3.75 0.105 !551

c3.xlarge 4 7.5 0.21 !552
c3.2xlarge 8 15 0.42 !553
c3.4xlarge 16 30 0.84 !554
c3.8xlarge 32 60 1.68 !555
g2.2xlarge 8 15 0.65 !556
g2.8xlarge 32 60 2.6 !557
r3.large 2 15 0.175 !558
r3.xlarge 4 30.5 0.35 !559
r3.2xlarge 8 61 0.7 !560
r3.4xlarge 16 122 1.4 !561
r3.8xlarge 32 244 2.8 !562
i1.xlarge 4 30.5 0.853 !563
i2.2xlarge 8 61 1.705 !564
i2.4xlarge 16 122 3.41 !565
i2.8xlarge 32 244 6.82 !566
d2.xlarge 4 30.5 0.69 !567
d2.2xlarge 8 61 1.38 !568
d2.4xlarge 16 56 2.76 !569
d2.8xlarge 36 244 5.52 !570
!571
----------- !572
----------- !573
----------- !574
!575
!576
File: monitoringaccountingbilling/trunk/src/gratia/awsvm/README !577
Steps to install AWS-gratia-probe(procedures for SL6)(not supported for SL5): !578
You could also follow 579
https://twiki.grid.iu.edu/bin/view/Documentation/Release3/InstallAwsVmGratiaProbe !…
!580
1. First install the EPEL 6 !581
 rpm -Uvh http://dl.fedoraproject.org/pub/epel/5/i386/epel-release-5-4.noarch.rpm !582
2. Next you need to get the osg repo !583

http://repo.grid.iu.edu/osg/3.2/osg-3.2-el6-release-latest.rpm !584
and use yum to install the gratia-probe-awsvm. !585
The rpm name being gratia-probe-awsvm-(% VERSION).el6.noarch.rpm !586

3. You have to install pip and boto3 !587
B) yum install -y python-pip !588

C) Next install the boto3 package using pip !589
pip install boto3 !590

4. Boto3 needs the aws credentials file containing the IAM Access ID and Key inorder to access the 591
AWS console. !…
A) create a credentials file in the standard place specified by AWS !592
5. Next modify the ProbeConfig file !593

vi /etc/gratia/awsvm/ProbeConfig !594
A) Modify the host name and ports to point to the gratia server like below !595

CollectorHost="fermicloud054.fnal.gov:8880" !596
 SSLHost="fermicloud054.fnal.gov:8443" !597
 SSLRegistrationHost="fermicloud054.fnal.gov:8080" !598
B) Also enable the probe by setting below to one !599

EnableProbe="1" !600
c) Also enable Excempt duplicates in order to prevent probe from sending records more than once 601
per hour using !…

ExcemptDuplicates="1" !602
Save the changes to config file !603

6. Next we need to add the probe's cron to the system cron and enable it !604
A) add the cron !605

chkconfig --add gratia-probes-cron !606
B) Enable the cron !607

chkconfig gratia-probes-cron on !608
c) Check its status !609

chkconfig --list gratia-probes-cron !610
D) also start the service !611

service gratia-probes-cron start !612
7. The aws-gratia-probe is started and will run every one hour !613

we can check the logs in !614
vi /var/logs/gratia/(%date).log !615

!616
!617
!618
ALSO INCASE ANY ERRORS ARE THROWN BY THE PROBE DURING RUNTIME !619
OR IF THE PROBE DOESNT EXECUTE PROPERLY !620
1. IF the excempt duplicates is set and the filelock throws erros !621

check whether the filelock file exists at !622
/var/lib/gratia/filelock !623
and also where it is set properly in ProbeConfig file !624

DuplicateFilelock="/var/lib/gratia/filelock" !625
2. If it says hardwareinst doesnt exist check whether the file exists and the value is it properly 626
in probe !…

HardwareDetails="/usr/share/gratia/awsvm/hardwareinst" !627
3. If u need to add or update the values to the table in hardwareinst plf follow the syntax !628

instance-type(\tab)vcpu(\tab)ram(\tab)price(\tab)(\newline) !629
value1(\tab)value2(\tab)value3(\tab)value4(\tab)(\newline) !630
eg : m3.medium(\tab)1(\tab)3.75(\tab)0.067(\tab)(\newline) !631

!632
!633
----------- !634
----------- !635
----------- !636
!637
!638
File: monitoringaccountingbilling/trunk/src/gratia/site-packages/gratia/awsvm/__init__.py !639
!640
----------- !641
----------- !642
----------- !643
!644
!645
File: monitoringaccountingbilling/trunk/src/gratia/site-packages/gratia/awsvm/cpuutil.py !646
#!/usr/bin/env python !647
from pprint import pprint !648
import datetime; !649
import boto3; !650
import sys !651
import os !652
import time !653
!654
class cpuUtilization: !655

def __init__(self): !656
self.ec2=boto3.client('ec2',region_name='us-west-2') !657

def getUtilPercent(self,instid): !658
ec2=boto3.client('ec2',region_name='us-west-2') !659
cw = boto3.client('cloudwatch',region_name='us-west-2') !660
resp=ec2.describe_instances(InstanceIds=[instid]) !661

#pprint(resp) !662
#print 'hello' !663
resv=resp['Reservations'] !664
for reservation in resv: !665

#pprint(reservation) !666
instances=reservation['Instances'] !667
for instance in instances: !668

#pprint(instance) !669
#print instance['LaunchTime'] !670
launchtime=instance['LaunchTime'] !671
zone=instance['Placement']['AvailabilityZone'] !672
#print zone !673
inst_type=instance['InstanceType'] !674
print inst_type !675

#print launchtime.hour !676
minu=launchtime.minute !677
#print minu !678
EndTime=datetime.datetime.utcnow() !679
EndTime=EndTime.replace(minute=minu) !680
StartTime=EndTime.replace(hour=(EndTime.hour-1)) !681
print StartTime !682
print EndTime !683
!684
response = cw.get_metric_statistics(!685
 Namespace='AWS/EC2', !686
 MetricName='CPUUtilization', !687
 Dimensions=[!688

 { !689
 'Name': 'InstanceId', !690
 'Value': instid !691
 }, !692
], !693
 StartTime=StartTime, !694
 EndTime=EndTime, !695
 Period=3600, !696
 Statistics=['Average','Minimum','Maximum'], !697
 Unit='Percent') !698
#pprint(response) !699

datapoints=response['Datapoints'] !700
if len(datapoints)==1: !701

datapoint=datapoints[0] !702
average=datapoint['Average'] !703
#print average !704
return average !705

!706
!707
----------- !708
----------- !709
----------- !710
!711
!712
File: monitoringaccountingbilling/trunk/src/gratia/site-packages/gratia/awsvm/get_account_id.py !713
#!/usr/bin/env python !714
from pprint import pprint; !715
import datetime; !716
import boto3; !717
import sys !718
import os !719
import time !720
!721
class get_account_id: !722

def __init__(self): !723
self.ec2=boto3.client('ec2',region_name='us-west-2') !724

!725
 def get_id(self): !726

myec2=boto3.client('ec2',region_name='us-west-2') !727
 resp=myec2.describe_images(Owners=['self']) !728
 #pprint(resp) !729
 images=resp['Images'] !730
 for image in images: !731

myowner=image['OwnerId'] !732
 #as written this will return the last OwnerID !733
 #but they should all be the same !734

return myowner !735
!736
----------- !737

----------- !738
----------- !739
!740
!741
File: monitoringaccountingbilling/trunk/src/gratia/site-packages/gratia/awsvm/inst_hardware.py !742
#!/usr/bin/env python !743
from pprint import pprint !744
import datetime; !745
!746
class insthardware: !747

def __init__(self,filelocation): !748
self.fileloc=filelocation !749

def gettypedetails(self): !750
types=[] !751
field=[] !752
#repo = {} !753
!754
infile = open(self.fileloc,'r') !755
firstline = infile.readline() !756
fields=firstline.split("\t") !757
#print fields !758
for f in fields: !759

#print f !760
if f == "\n": !761

fields.remove(f) !762
!763

#print fields !764
lines= infile.readlines() !765
#print firstline !766
for i in lines: !767

#print i !768
values=i.split("\t") !769
values.remove("\n") !770
#print values !771
x=0 !772
repo={} !773
while x<len(fields): !774

repo[fields[x]]=values[x] !775

x+=1 !776
#print repo !777
types.append(repo) !778

#pprint(types) !779
return types !780

!781
#module = ''.join(i.split(',')[:-1]) !782
#time = ''.join(i.split(',')[1:]).replace('\n','') !783
#if not module in repo: !784
repo[module] = time !785

!786
----------- !787
----------- !788
----------- !789
!790
!791
File: monitoringaccountingbilling/trunk/src/gratia/site-packages/gratia/awsvm/spot_price.py !792
#!/usr/bin/env python !793
import datetime; !794
import boto3; !795
import sys !796
import os !797
import time !798
!799
class spot_price: !800

def __init__(self): !801
self.ec2=boto3.client('ec2',region_name='us-west-2') !802
!803

def get_price(self,instid): !804
resp=self.ec2.describe_instances(InstanceIds=[instid]) !805
#pprint(resp) !806
#print 'hello' !807
resv=resp['Reservations'] !808
for reservation in resv: !809

#pprint(reservation) !810
instances=reservation['Instances'] !811
for instance in instances: !812

#pprint(instance) !813

#print instance['LaunchTime'] !814
launchtime=instance['LaunchTime'] !815
zone=instance['Placement']['AvailabilityZone'] !816
#print zone !817
inst_type=instance['InstanceType'] !818
#print inst_type !819

#print launchtime.hour !820
minu=launchtime.minute !821
#print minu !822
StartTime=datetime.datetime.utcnow() !823
#print StartTime !824
if(minu>StartTime.minute): !825

StartTime=StartTime.replace(hour=(StartTime.hour-1)) !826
StartTime=StartTime.replace(minute=minu) !827
#print StartTime !828
EndTime=StartTime !829
#response = 830

self.ec2.describe_spot_price_history(StartTime=datetime(2015,7,8,9,00,00),EndTime=datetime(2015,7,8…
,9,00,00),InstanceTypes=['m3.medium'],ProductDescription=['Linux/UNIX'],AvailabilityZone='us-west-…
2a',NextToken='abc') !…

#pprint(response) !831
#print 'hello' !832
resp1 = self.ec2.describe_spot_price_history(!833

 DryRun=False, !834
 StartTime=StartTime, !835
 EndTime=EndTime, !836
 InstanceTypes=[inst_type], !837
 ProductDescriptions=['Linux/UNIX'], !838
 Filters=[], !839
 AvailabilityZone=zone, !840
 MaxResults=1000, !841
 NextToken='') !842

#pprint(resp1) !843
sphs=resp1['SpotPriceHistory'] !844
if len(sphs)==0: !845

print "no spot price history as Instance is not of a spot Instance type" !846
spotprice=0 !847

else: !848

sph=sphs[0] !849
spotprice=sph['SpotPrice'] !850

#print spotprice !851
#print 'hello' !852
return spotprice !853
return StartTime !854

if __name__ == '__main__': !855
try: !856

sp=spot_price() !857
value=sp.get_price('i-d0952f26') !858
#print value !859

except IndexError: !860
print "The instance is not a spot type instance and Hence there is no spot price history" !861

except Exception, e: !862
 print >> sys.stderr, str(e) !863
 sys.exit(1) !864
 sys.exit(0) !865
!866
----------- !867
----------- !868
----------- !869
!870
!871
File: monitoringaccountingbilling/trunk/src/monitor/aws.py !872
#!/usr/bin/python !873
from collections import defaultdict !874
from optparse import OptionParser !875
import time !876
import logging !877
import datetime !878
!879
import boto3 !880
!881
from graphite import Graphite !882
!883
def get_ec2_instance_cpu(region,instance,end_time=None,period=300): !884
 if end_time is None: !885
 end_time=datetime.datetime.utcnow() !886

 cw = boto3.client('cloudwatch',region_name=region) !887
 response = cw.get_metric_statistics(!888
 Namespace='AWS/EC2', !889
 MetricName='CPUUtilization', !890
 Dimensions=[{'Name':"InstanceId",'Value':instance}], !891
 StartTime=end_time-datetime.timedelta(seconds=period*2), !892
 EndTime=end_time, !893
 Period=period, !894
 Statistics=['Average','Minimum','Maximum'], !895
 Unit='Percent') !896
 datapoints=response['Datapoints'] !897
 r = {} !898
 if len(datapoints) > 0: !899
 datapoint=datapoints[-1] !900
 r['avg'] = datapoint['Average'] !901
 r['min'] = datapoint['Minimum'] !902
 r['max'] = datapoint['Maximum'] !903
 else: !904
 logging.warning('no CPU utilization received for instance %s'%instance) !905
 return r !906
!907
def get_ec2_instances(region): !908
 r = defaultdict(int) !909
 cpu = defaultdict(float) !910
 #try: !911
 ec2 = boto3.resource('ec2',region) !912
 instances = ec2.instances.all() !913
 for i in instances: !914
 type = i.instance_type.replace('.','_') !915
 if i.state['Name'] == 'running': !916
 cpu_usage = get_ec2_instance_cpu(region, i.instance_id) !917
 cpu[type] += cpu_usage.get('avg',0) !918
 metric = "{0}.counts.{1}".format(type,i.state['Name']) !919
 r[metric] += 1 !920
!921
 for k,v in cpu.iteritems(): !922
 r[k+".cpu.avg"] = v/r[k+".counts.running"] !923
 #except Exception as e: !924

 # logging.error('error communicating with AWS: %s'%e) !925
 # raise e !926
 return r !927
!928
if __name__ == '__main__': !929
 parser = OptionParser() !930
 parser.add_option('-t','--test',action="store_true", !931
 dest="test",default=False, !932
 help="output data to stdout, don't send to graphite. Implies -1.") !933
 parser.add_option('-1','--once',action="store_true", !934
 dest="once",default=False, !935
 help="run once and exit") !936
 parser.add_option('-r','--region', default="us-west-2", !937
 help="AWS region to query; default=us-west-2") !938
 parser.add_option('-n','--namespace', default="test", !939
 help="base graphite metric namespace; default=test") !940
 parser.add_option('-m','--meta_namespace', default="probes.aws_instances", !941
 help="probe metadata graphite metric namespace; default=probes.aws_instances") !942
 parser.add_option('-i','--interval', type="int", default=240, !943
 help="post interval (seconds); default=240") !944
!945
 (opts,args) = parser.parse_args() !946
!947
 logformat="%(asctime)s - %(name)s - %(levelname)s - %(message)s" !948
 if opts.test: !949
 logging.basicConfig(format=logformat,level=logging.DEBUG) !950
 else: !951
 logging.basicConfig(format=logformat,level=logging.INFO) !952
!953
 g = Graphite() !954
 while True: !955
 start = time.time() !956
 data = get_ec2_instances(opts.region) !957
 duration = time.time()-start !958
 logging.info("queried AWS region {0} in {1} s".format(opts.region,duration)) !959
!960
 send_start = time.time() !961
 g.send_dict(opts.namespace, data, debug_print=opts.test, send_data=(not opts.test)) !962

 meta_data = { !963
 "update_time": duration, !964
 } !965
 g.send_dict(opts.meta_namespace, meta_data, debug_print=opts.test, send_data=(not 966
opts.test)) !…
!967
 duration = time.time()-send_start !968
 logging.info("sent {0} metrics to graphite namespace {1} in {2} 969
s".format(len(data)+len(meta_data), opts.namespace, duration)) !…
!970
 if opts.test or opts.once: !971
 break !972
!973
 duration = time.time()-start !974
 sleep = max(opts.interval-duration-10,0) !975
 logging.info("sleeping {0} s".format(sleep)) !976
 time.sleep(sleep) !977
!978
----------- !979
----------- !980
----------- !981
!982
!983

984

File: ondemandservices/hepcloud-init-workernode !1
#!/bin/sh !2
BEGIN INIT INFO !3
chkconfig: 2345 27 25 !4
Provides: hepcloud-init-workernode !5
Required-Start: $local_fs $network !6
Should-Start: $time !7
Required-Stop: !8
Should-Stop: !9
Default-Start: 2 3 4 5 !10
Default-Stop: 0 1 6 !11
Short-Description: Fix host name and az-specific config files !12
Description: Start cloud-init and runs the initialization phase !13
and any associated initial modules as desired. !14
#test !15
END INIT INFO !16
LOG="/var/log/hepcloud-init-workernode.log" !17
RETVAL=0 !18
!19
prog="hepcloud-init-workernode" !20
!21
start() { !22
!23
touch /var/lock/subsys/hepcloud-init-workernode !24
!25
get the public hostname of the EC2 instance and change the !26
output of the hostname command to match that. (needed for gridftp). !27
!28
mypublicip=`GET http://169.254.169.254/latest/meta-data/public-ipv4` !29
myrc=$? !30
if [$myrc -ne 0] !31
then !32

echo "My public IP not defined" >> $LOG !33
 return 6 !34
fi !35
nslookup $mypublicip | grep "name =" | awk -F' ' '{print $4}' | sed 's/com\./com/' > /etc/hostname !36
myrc=$? !37
if [$myrc -ne 0] !38

then !39
 echo "My public DNS name not defined" >> $LOG !40
 return 7 !41
fi !42
hostname -F /etc/hostname !43
!44
This script modifies the CVMFS and Frontier scripts on VM startup !45
to point to the ELB-enabled squid stack for the respective !46
availability zone !47
!48
zone=$(curl -s http://169.254.169.254/latest/meta-data/placement/availability-zone) !49
echo $zone !50
echo $zone >> $LOG !51
addr="http://elb2.$zone.elb.fnaldata.org:3128" #HK> export http_proxy does not like two 52
back-slashes, I had to remove them !…
!53
new code by ST and HK ## !54
export http_proxy=$addr !55
wget http://cvmfs.fnal.gov:8000/cvmfs/cms.cern.ch/.cvmfspublished !56
returnvalue=$? !57
if [$returnvalue -ne 0] !58
then !59

echo "Squid Server is not accessible in $zone, trying us-west-2b" >> $LOG !60
!61

if [$zone != "us-west-2b"] !62
then !63
 uswest2baddr="http://elb2.us-west-2b.elb.fnaldata.org:3128" !64
 export http_proxy=$uswest2baddr !65
 wget http://cvmfs.fnal.gov:8000/cvmfs/cms.cern.ch/.cvmfspublished !66
 returnvalue=$? !67
 if [$returnvalue -ne 0] !68
 then !69

echo "Squid Server is not accessible at all" >> $LOG !70
return 11 !71

 else !72
echo "Squid Server is available in us-west-2b" >> $LOG !73
addr="http:\/\/elb2.us-west-2b.elb.fnaldata.org:3128" !74

 fi !75

!76
else !77
 echo "Squid Server is not available even in us-west-2b" >> $LOG !78
 return 11 !79
fi !80

!81
else !82

echo "Squid Server is available in $zone" >> $LOG !83
addr="http:\/\/elb2.$zone.elb.fnaldata.org:3128" #HK> now, sed command below requires two 84

back-slashes, I had restore them here. !…
fi !85
END: new code by HK and ST ## !86
!87
!88
make sure /etc/cvmfs/default.local is in place !89
if [! -r /etc/cvmfs/default.local] !90
then !91

echo "/etc/cvmfs/default.local not found" >> $LOG !92
 return 8 !93
fi !94
and modify !95
sed -i -e "s/\(CVMFS_HTTP_PROXY=\).*/\1$addr/" /etc/cvmfs/default.local !96
!97
!98
!99
make sure /usr/bin/cvmfs_config is in place !100
if [! -x /usr/bin/cvmfs_config] !101
then !102

echo "/usr/bin/cvmfs_config not executable" >> $LOG !103
 return 9 !104
fi !105
and run it !106
/usr/bin/cvmfs_config reload >> $LOG 2>&1 !107
!108
!109
!110
make sure /etc/cvmfs/SITECONF/local/JobConfig/site-local-config.xml is in place !111
if [! -r /etc/cvmfs/SITECONF/T3_US_HEP_Cloud/JobConfig/site-local-config.xml] !112

then !113
echo "/etc/cvmfs/SITECONF/T3_US_HEP_Cloud/JobConfig/site-local-config.xml not found" >> $LOG !114

 return 10 !115
fi !116
and modify !117
sed -i -e "s/\(<proxy url=\).*/\1\"$addr\"\/>/" 118
/etc/cvmfs/SITECONF/T3_US_HEP_Cloud/JobConfig/site-local-config.xml !…
!119
!120
!121
getting rid of the Fermi-specific crlsquid.fnal.gov and crl-cache.fnal.gov if it's there !122
if [-r /etc/fetch-crl.conf] !123
then !124
 cp -p /etc/fetch-crl.conf /etc/fetch-crl.conf.fermisav !125
 sed -i -e "s/\(http_proxy = \).*/\1$addr/" /etc/fetch-crl.conf !126
 grep -v prepend_url /etc/fetch-crl.conf > /etc/fetch-crl.conf.temp !127
 cp /etc/fetch-crl.conf.temp /etc/fetch-crl.conf !128
start a fetch-crl now at S27 instead of enabling the fetch-crl-boot !129
and throw it into background. !130
!131
commented out by HK/ST in order to make sure fetch-crl does not populate 132
/etc/grid-security/certificates/ with *.r0 files !…
nohup /usr/sbin/fetch-crl < /dev/null >> $LOG 2>&1 & !133
fi !134
!135
return 0 !136
} !137
!138
stop() { !139
!140
rm /var/lock/subsys/hepcloud-init-workernode !141
!142
return 0 !143
} !144
!145
case "$1" in !146
 start) !147
 start !148

 RETVAL=$? !149
;; !150

 stop) !151
 stop !152
 RETVAL=$? !153

;; !154
 restart|try-restart|condrestart) !155
 ## Stop the service and regardless of whether it was !156
 ## running or not, start it again. !157
 # !158
 ## Note: try-restart is now part of LSB (as of 1.9). !159
 ## RH has a similar command named condrestart. !160
 start !161
 RETVAL=$? !162

;; !163
 reload|force-reload) !164
 # It does not support reload !165
 RETVAL=3 !166

;; !167
 status) !168
 echo -n $"Checking for service $prog:" !169
 # Return value is slightly different for the status command: !170
 # 0 - service up and running !171
 # 1 - service dead, but /var/run/ pid file exists !172
 # 2 - service dead, but /var/lock/ lock file exists !173
 # 3 - service not running (unused) !174
 # 4 - service status unknown :-(!175
 # 5--199 reserved (5--99 LSB, 100--149 distro, 150--199 appl.) !176
 RETVAL=3 !177

;; !178
 *) !179
 echo "Usage: $0 {start|stop|status|try-restart|condrestart|restart|force-reload|reload}" !180
 RETVAL=3 !181

;; !182
esac !183
!184
exit $RETVAL !185
!186

----------- !187
----------- !188
----------- !189
!190
!191
File: ondemandservices/largequery.sh !192
#!/bin/bash !193
!194
#This script should be present in the /root directory to work.If you are planning to place to 195
somewhere else please change the path in the lines 6-8 !…
!196
zone=$(curl -s http://169.254.169.254/latest/meta-data/placement/availability-zone) !197
!198
echo zone !199
!200
addr="http:\/\/elb2.$zone.elb.fnaldata.org:3128" !201
!202
sed -i -e "s/\(CVMFS_HTTP_PROXY=\).*/\1$addr/" ../etc/cvmfs/default.local !203
!204
export http_proxy=http://elb2.us-west-2b.elb.fnaldata.org:3128 !205
!206
export STRATUM1URL="http://cvmfs.fnal.gov:8000" !207
!208
NUMPROCESSES=25 !209
!210
WGETSPERITER=100 !211
!212
let I=0 !213
!214
#RUNNING="running.`uname -n`" !215
!216
#trap "rm -f $RUNNING" 0 !217
!218
#touch $RUNNING !219
!220
let P=0 !221
!222
while [$P -lt $NUMPROCESSES]; do !223

!224
 let P=$P+1 !225
!226
 (let I=$I+1 !227
!228
 echo "Iteration $P:$I" !229
!230
 time bash -c 'n=0; while [$n -lt '"$WGETSPERITER"']; do wget -qO/dev/null 231
"$STRATUM1URL/cvmfs/fermilab.opensciencegrid.org/data/3d/d8c5d91b8a94cd26a734c48188d5bbc223855bP"; …
let n=$n+1; done') > /tmp/$P.out 2>&1 & !…
!232
done !233
!234
wait !235
!236
!237
----------- !238
----------- !239
----------- !240
!241
!242
File: ondemandservices/smallquery.sh !243
#!/bin/bash !244
!245
#This script should be present in the /root directory to work.If you are planning to place to 246
somewhere else please change the path in the lines 6-8 !…
!247
zone=$(curl -s http://169.254.169.254/latest/meta-data/placement/availability-zone) !248
!249
echo zone !250
!251
addr="http:\/\/elb2.$zone.elb.fnaldata.org:3128" !252
!253
export http_proxy=$addr !254
!255
export STRATUM1URL="http://cvmfs.fnal.gov:80" !256
!257
NUMPROCESSES=25 !258

!259
WGETSPERITER=25 !260
!261
REPEATSPERWGET=500 !262
!263
let I=0 !264
!265
#RUNNING="running.`uname -n`" !266
!267
#trap "rm -f $RUNNING" 0 !268
!269
#touch $RUNNING !270
!271
let P=0 !272
!273
URL="$STRATUM1URL/cvmfs/fermilab.opensciencegrid.org/.cvmfspublished" !274
!275
let U=0 !276
!277
export URLS="" !278
!279
while [$U -lt $REPEATSPERWGET]; do !280
!281
 let U=$U+1 !282
!283
 URLS="$URLS $URL" !284
!285
done !286
!287
while [$P -lt $NUMPROCESSES]; do !288
!289
 let P=$P+1 !290
!291
while [-f $RUNNING]; do !292
!293
 (let I=$I+1 !294
!295
 echo "Iteration $P:$I" !296

!297
 time bash -c 'n=0; while [$n -lt '"$WGETSPERITER"']; !298
!299
do wget -qO/dev/null $URLS; let n=$n+1; done') > /tmp/$P.out 2>&1 & !300
!301
 # exit !302
!303
done & !304
!305
done !306
!307
wait !308
!309
iftop !310
!311
!312
!313
!314
----------- !315
----------- !316
----------- !317
!318
!319
File: ondemandservices/squid-client-addr-change.sh !320
#!/bin/bash !321
#This script should be present in the /root directory to work.If you are planning to place to 322
somewhere else please change the path in the lines 6-8 !…
zone=$(curl -s http://169.254.169.254/latest/meta-data/placement/availability-zone) !323
echo zone !324
addr="http:\/\/elb2.$zone.elb.fnaldata.org:3128" !325
sed -i -e "s/\(CVMFS_HTTP_PROXY=\).*/\1$addr/" ../etc/cvmfs/default.local !326
sed -i -e "s/\(http_proxy=\).*/\1$addr/" ../cvmfsload/smallquery !327
sed -i -e "s/\(http_proxy=\).*/\1$addr/" ../cvmfsload/largequery !328
!329
!330
----------- !331
----------- !332
-----------333

File: spotpricehistory/SpotPriceHistory.py !1
!2
import boto3 !3
import datetime !4
import os.path !5
from boto3.session import Session !6
!7
class SpotPriceHistory: !8
 ''' !9
 This class is used for getting spot pricing history !10
 ''' !11
!12
 startTime = "" !13
 endTime = "" !14
 zone = "us-west-2a" !15
 instanceType="m3.medium" !16
 os="Linux/UNIX" !17
 #historyData = {} !18
 #dataList=[] !19
 nextToken="" !20
 def __init__(self,instanceType,zone): !21
 self.instanceType=instanceType !22
 self.zone=zone !23
 self.historyData={} !24
 self.dataList=[] !25
 self.filename="Database/"+self.instanceType+"_"+self.zone !26
 self.readLastTimeFromDatabase() !27
 !28
 def set_startTime(self,startTime): !29
 self.startTime=startTime !30
 def set_endTime(self,endTime): !31
 self.endTime=endTime !32
 def set_zone(self,zone): !33
 self.zone=zone !34
 def set_instanceType(self,instanceType): !35
 self.instanceType=instanceType !36
 def set_os(self,os): !37
 self.os=os !38

 !39
 !40
 def getSpotPriceHistory(self): !41
 session = Session(aws_access_key_id='', !42
 aws_secret_access_key='', !43
 region_name=self.zone[:-1]) !44
 client = session.client('ec2') !45
 iterates=0 !46
 while iterates==0 or self.nextToken!="" : !47
 temp = client.describe_spot_price_history(!48
 DryRun=False, !49
 StartTime=self.startTime, !50
 EndTime=self.endTime, !51
 InstanceTypes=[self.instanceType], !52
 ProductDescriptions=[self.os], !53
 Filters=[], !54
 AvailabilityZone= self.zone, !55
 MaxResults=1000, !56
 NextToken=self.nextToken !57
) !58
 self.dataList.insert(0, temp) !59
tempDic=self.historyData.copy() !60
tempDic.update(temp) !61
self.historyData=tempDic !62
 self.nextToken=temp['NextToken'] !63
 iterates+=1 !64
 def printHistoryData(self): !65
 for dicts in self.dataList: !66
 for i in reversed(dicts['SpotPriceHistory']): !67
 print 68
(i['InstanceType'],i['ProductDescription'],i['SpotPrice'],str(i['Timestamp']),i['…
AvailabilityZone']) !…
 !69
 def getCredentials(self): !70
 ''' !71
 Get AWS credentials from file !72
 ''' !73
 !74

 def writeHistoryData(self): !75
 ''' !76
 Write the historical data into database !77
 ''' !78
 filename=self.filename !79
 if not os.path.isfile(filename): !80
 f=open(filename,"w") !81
 f.write("DateTime Price InstanceType Zone\n") !82
 for dicts in self.dataList : !83
 for i in reversed(dicts['SpotPriceHistory']): !84
 f.write(i['Timestamp'].strftime("%Y-%m-%dT%H:%M:%S.%f")+" 85
"+str(i['SpotPrice'])+" "+str(i['InstanceType'])+" "+str(i['AvailabilityZone'])+"\n") !…
 f.close() !86
 else: !87
 f=open(filename,"a") !88
 for dicts in self.dataList : !89
 for i in reversed(dicts['SpotPriceHistory']): !90
for t in i['Timestamp'].timetuple(): !91
print t !92
for tt in self.startTime.timetuple(): !93
print tt !94
 if i['Timestamp'].replace(tzinfo=None)>self.startTime: !95
 f.write(i['Timestamp'].strftime("%Y-%m-%dT%H:%M:%S.%f")+" 96
"+str(i['SpotPrice'])+" "+str(i['InstanceType'])+" "+str(i['AvailabilityZone'])+"\n") !…
 f.close() !97
 !98
 !99
 def readLastTimeFromDatabase(self): !100
 ''' !101
 read last time stamp from the Database, and set start time and end time !102
 ''' !103
 self.endTime=datetime.datetime.utcnow() !104
 filename = self.filename !105
 if not os.path.isfile(filename): !106
 print ("File does not exist! Start from 90 days ago!") !107
 self.startTime=self.endTime-datetime.timedelta(days=90) !108
 !109
 else: !110

 with open(filename,"r") as f: !111
 for lines in f: !112
 pass !113
 last=lines !114
 #content=f.read().splitlines() !115
 #tempStr=content[len(content)-2].split(" ") !116
 tempStr=last.split(" ") !117
 print "Last time stamp: " + tempStr[0] !118
 self.startTime=datetime.datetime.strptime(tempStr[0],"%Y-%m-%dT%H:%M:%S.%f") !119
 f.close() !120
self.startTime=self.startTime.replace(tzinfo=None) !121
for tt in self.startTime.timetuple(): !122
print tt !123
!124
!125
vCPUs = { !126
 'c3.large':2, !127
 'c3.xlarge':4, !128
 'c3.2xlarge':8, !129
 'c3.4xlarge':16, !130
 'c3.8xlarge':32, !131
 'm3.medium':1, !132
 'm3.large':2, !133
 'm3.xlarge':4, !134
 'm3.2xlarge':8, !135
} !136
!137
ecu = { !138
 'c3.large':7, !139
 'c3.xlarge':14, !140
 'c3.2xlarge':28, !141
 'c3.4xlarge':55, !142
 'c3.8xlarge':108, !143
 'm3.medium':3, !144
 'm3.large':6.5, !145
 'm3.xlarge':13, !146
 'm3.2xlarge':26, !147
} !148

!149
std_prices = { !150
 'c3.large' :0.105, !151
 'c3.xlarge' :0.210, !152
 'c3.2xlarge':0.420, !153
 'c3.4xlarge':0.840, !154
 'c3.8xlarge':1.680, !155
 'm3.medium' :0.070, !156
 'm3.large' :0.140, !157
 'm3.xlarge' :0.280, !158
 'm3.2xlarge':0.560 !159
} !160
!161
----------- !162
----------- !163
----------- !164
!165
!166
File: spotpricehistory/updateDatabase.py !167
from SpotPriceHistory import SpotPriceHistory !168
import datetime !169
import os.path !170
#from analysis import simulation !171
!172
instances=["m3.2xlarge","c3.2xlarge","m3.xlarge","c3.xlarge","m3.medium","m3.large","m3.xlarge"173
,"c3.large","c3.4xlarge","c3.8xlarge"] !…
zone=["us-east-1b", 174
"us-east-1c","us-east-1d","us-east-1e","us-west-1a","us-west-1c","us-west-2a", …
"us-west-2b","us-west-2c",] !…
!175
if not os.path.exists("Database"): !176
 os.mkdir("Database") !177
if not os.path.exists("Histogram"): !178
 os.mkdir("Histogram") !179
!180
!181
for i in instances: !182
 for z in zone: !183

 awsPrice=SpotPriceHistory(i,z) !184
 awsPrice.getSpotPriceHistory() !185
 awsPrice.writeHistoryData() !186
analyze=simulation(i,z) !187
analyze.writeHistogram() !188
 print i + " in " + z +" finishes!" !189
!190
----------- !191
----------- !192
----------- !193
!194
!195

196

File: imagemanagement/step2/config.py !1
import os !2
!3
import ini_handler !4
!5
from errors import ConfigError !6
!7
from simple_logging import Logger !8
from simple_logging import FileWriter !9
from simple_logging import SyslogWriter !10
from simple_logging import ConsoleWriter !11
!12
from contextualization_types import CONTEXT_TYPE_EC2 !13
from contextualization_types import CONTEXT_TYPE_NIMBUS !14
from contextualization_types import CONTEXT_TYPE_OPENNEBULA !15
!16
class Config(object): !17
 valid_context_types = [CONTEXT_TYPE_EC2, CONTEXT_TYPE_NIMBUS, CONTEXT_TYPE_OPENNEBULA] !18
!19
 def __init__(self, config_ini="/etc/glideinwms/glidein-pilot.ini"): !20
 if not os.path.exists(config_ini): !21
 raise ConfigError("%s does not exist" % config_ini) !22
!23
 self.ini = ini_handler.Ini(config_ini) !24
!25
 self.default_max_lifetime = self.ini.get("DEFAULT", "default_max_lifetime", "172800") 26
48 hours !…
 self.max_lifetime = self.default_max_lifetime # can be overridden !27
 self.disable_shutdown = self.ini.getBoolean("DEFAULT", "disable_shutdown", False) !28
 self.max_script_runtime = self.ini.get("DEFAULT", "max_script_runtime", "60") !29
!30
 self.pre_script_dir = self.ini.get("DIRECTORIES", "pre_script_dir", 31
"/usr/libexec/glideinwms_pilot/PRE") !…
 self.post_script_dir = self.ini.get("DIRECTORIES", "post_script_dir", 32
"/usr/libexec/glideinwms_pilot/POST") !…
!33
 # home directory is created by the rpm !34
 self.home_dir = "/home/glidein_pilot" !35

 self.glidein_user = "glidein_pilot" !36
#HK !37
 self.scratch_dir = "/home/scratchgwms" !38
!39
 # glidein_startup.sh specific attributes !40
 self.factory_url = "" !41
 self.pilot_args = "" !42
 self.proxy_file = "" !43
 self.pilot_args = "" !44
!45
 def setup(self): !46
 self.setup_logging() !47
 self.setup_pilot_files() !48
 self.setup_contextualization() !49
!50
 def setup_pilot_files(self): !51
 self.ini_file = "%s/glidein_userdata" % self.home_dir !52
 self.userdata_file = "%s/userdata_file" % self.home_dir !53
 self.log.log_info("Default ini file: %s" % self.ini_file) !54
 self.log.log_info("Default userdata file: %s" % self.userdata_file) !55
!56
 def setup_contextualization(self): !57
 self.contextualization_type = self.ini.get("DEFAULT", "contextualize_protocol") !58
 self.log.log_info("Contextualization Type identified as: %s" % 59
self.contextualization_type) !…
 if self.contextualization_type in Config.valid_context_types: !60
 if self.contextualization_type == CONTEXT_TYPE_EC2: !61
 self.ec2_url = self.ini.get("DEFAULT", "ec2_url") !62
 elif self.contextualization_type == CONTEXT_TYPE_NIMBUS: !63
 self.nimbus_url_file = self.ini.get("DEFAULT", "nimbus_url_file") !64
 elif self.contextualization_type == CONTEXT_TYPE_OPENNEBULA: !65
 self.one_user_data_file = self.ini.get("DEFAULT", "one_user_data_file") !66
 else: !67
 raise ConfigError("configured context type not valid") !68
!69
 def setup_logging(self): !70
 log_writer = None !71
 log_writer_class = self.ini.get("DEFAULT", "logger_class", None) !72

 if log_writer_class: !73
 if log_writer_class == "SyslogWriter": !74
 facility = self.ini.get("DEFAULT", "syslog_facility", None) !75
 priority = self.ini.get("DEFAULT", "syslog_priority", None) !76
 log_writer = SyslogWriter(facility=facility, priority=priority) !77
 elif log_writer_class == "ConsoleWriter": !78
 output = self.ini.get("DEFAULT", "console_output", "stdout") !79
 log_writer = ConsoleWriter(output=output) !80
 else: !81
 log_writer = FileWriter(self.home_dir) !82
 else: !83
 #log_writer = FileWriter(self.home_dir) !84
 log_writer = FileWriter('/var/log/glideinwms-pilot') !85
 self.log = Logger(log_writer) !86
 self.log.log_info("Pilot Launcher started...") !87
!88
 def export_custom_env(self): !89
 """ !90
 @returns: string containing the shell (sh, bash, etc) directives to !91
 export the environment variables !92
 """ !93
 environment = "" !94
 try: !95
 env = self.get_custom_env() !96
 for option in env: !97
 environment += "export %s=%s; " % (option, env[option]) !98
 except: !99
 # pylint: disable=W0702 !100
 pass !101
 return environment !102
!103
 def get_custom_env(self): !104
 """ !105
 Returns a dictionary of the parent process environment plus the custom !106
 environment variables defined in the pilot config file. !107
!108
 NOTE: All custom environment variable names will be upper cased. The !109
 values for the custom environment variables will not be modified. !110

!111
 @returns: dictionary containing the desired process environment !112
 """ !113
 environment = {} !114
 # inherit the parent process environment !115
 for var in os.environ.keys(): !116
 environment[var] = os.environ[var] !117
!118
 try: !119
 # add in the custom environment !120
 for option in self.cp.ini.options("CUSTOM_ENVIRONMENT"): !121
 environment[str(option).upper()] = self.ini.get("CUSTOM_ENVIRONMENT", option) !122
 except: !123
 # pylint: disable=W0702 !124
 pass !125
!126
 # Add in the pilot proxy !127
 environment["X509_USER_PROXY"] = self.proxy_file !128
 environment["HOME"] = self.home_dir !129
 environment["LOGNAME"] = self.glidein_user !130
!131
 environment["SCRATCH"] = self.scratch_dir !132
 return environment !133
!134
----------- !135
----------- !136
----------- !137
!138
!139
File: imagemanagement/step2/hkpilot.sh !140
#!/bin/bash !141
export http_proxy="http://131.225.148.121:3128" !142
export https_proxy="http://131.225.148.121:3128" !143
!144
mkdir -p /etc/puppet/modules !145
#puppet module install desalvo-cvmfs !146
!147
cat << EOF | puppet apply !148

class cvmfs { !149
} !150
class cvmfs::client (!151
 \$repositories = 'sft.cern.ch', !152
 \$quota_limit = 30000, !153
 \$http_proxy = undef, !154
) inherits cvmfs { !155
!156
 package { cvmfs: ensure => installed, require => Package['osg-release'] } !157
 package { cvmfs-config-osg: ensure => installed, require => Package['osg-release'] } !158
 if (!defined(Package["fuse"])) { !159
 package { fuse: ensure => latest } !160
 } !161
!162
 if (!\$http_proxy) { !163
 \$default_http_proxy = 'DIRECT' !164
 !165
 } else { !166
 \$default_http_proxy = '${http_proxy};DIRECT' !167
 } !168
!169
 file { !170
 '/etc/cvmfs/default.local': !171
 owner => root, group => root, mode => 644, !172
 content => inline_template("CVMFS_REPOSITORIES=<%= repositories -%> 173
\nCVMFS_QUOTA_LIMIT=<%= quota_limit -%> \nCVMFS_HTTP_PROXY=\"<%= default_http_proxy -%>\" \n …
"), !…
 notify => Exec['cvmfs setup'] !174
 } !175
!176
 exec { 'cvmfs reload': !177
 path => ['/bin', '/usr/bin'], !178
 command => 'cvmfs_config reload', !179
 timeout => 0, !180
 refreshonly => true, !181
 require => [Package['cvmfs'],Package['cvmfs-config-osg']] !182
 } !183
!184

 exec { 'cvmfs setup': !185
 path => ['/bin', '/usr/bin'], !186
 command => 'cvmfs_config setup', !187
 timeout => 0, !188
 require => [Package['cvmfs'],Package['cvmfs-config-osg']] !189
 } !190
} !191
 group { 'cvmfs-gid': !192

name => 'cvmfs', !193
gid => '9125', !194
ensure => 'present', !195

 } !196
!197
 user { 'cvmfs-uid': !198

name => 'cvmfs', !199
uid => '46084', !200
gid => '9125', !201
home => '/var/lib/cvmfs', !202
comment => 'CernVM File System', !203
shell => '/sbin/nologin', !204
ensure => 'present', !205
require => Group['cvmfs-gid'], !206

 } !207
!208
 package { 'yum-conf-epel': !209
 ensure => 'installed', !210
 } !211
 !212
 package { 'yum-plugin-priorities': !213
 ensure => 'installed', !214
 } !215
!216
 package { 'osg-release': !217
 provider => 'rpm', !218
 source => 'http://repo.grid.iu.edu/osg/3.2/osg-3.2-el6-release-latest.rpm', !219
 } !220
!221
 yumrepo { 'epel': !222

 enabled => 1, !223
 require => Package['yum-conf-epel'], !224
 } !225
 !226
 package { 'osg-ca-certs': !227
 ensure => 'installed', !228
 require => Package['osg-release'] !229
 } !230
!231
 package { 'osg-oasis': !232
 ensure => 'installed', !233
 require => [Package['osg-release'], User['cvmfs-uid']], !234
 } !235
!236
 package { 'osg-wn-client': !237
 ensure => 'installed', !238
 require => Package['osg-release'] !239
 } !240
!241
 package { 'fetch-crl': !242
 ensure => 'installed', !243
 require => Package['yum-conf-epel'] !244
 } !245
!246
 service {'fetch-crl-boot': !247
 ensure => 'running', !248
 enable => 'false', !249
 require => [File['/etc/fetch-crl.conf'], Package['osg-wn-client'],] !250
 } !251
!252
 service {'fetch-crl-cron': !253
 ensure => 'running', !254
 enable => 'false', !255
 require => [File['/etc/fetch-crl.conf'], Package['osg-wn-client'],] !256
 } !257
!258
 file { '/etc/fetch-crl.conf': #Not sure this is not the default already.... !259

ensure => file, !260

mode => '644', !261
owner => 'root', !262
group => 'root', !263
content =>'# !264

PUPPET MAINTAINED file for fetch-crl !265
!266
infodir = /etc/grid-security/certificates !267
agingtolerance = 24 !268
nosymlinks !269
nowarnings !270
noerrors !271
stateless !272
logmode = syslog !273
syslogfacility = daemon !274
http_proxy = http://crlsquid.fnal.gov:3128 !275
prepend_url = http://crl-cache.fnal.gov/certificates/@ANCHORNAME@.r@R@ !276
', !277
 require => Package['fetch-crl'] !278
 } !279
 !280
 class { 'cvmfs::client': !281
 repositories => 282
'oasis.opensciencegrid.org,atlas.cern.ch,atlas-condb.cern.ch,cms.cern.ch,lhcb.cern.ch,nova.…
fnaldata.gov', !…
 quota_limit => 4000, !283
 http_proxy => 'squid.fnal.gov:3128', !284

require => Package['osg-oasis'], !285
 } !286
!287
 file { '/etc/cvmfs/keys/fnaldata.gov.pub': !288

ensure => 'file', !289
content => "-----BEGIN PUBLIC 290

KEY-----\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAngbplxwU8YgAoTcF51cr\…
nmt28kSWUMbn8fj4kKOkwtHILc1Hsh6sWbrTl/iZhWJDFPyVqnIyDGEHDUkHSt9XE\…
nWgdoz6VXoHbiVNg3xLLE3ORCycQumeb/wXf0juvL77LGvMmspmBB/2W/0Gprw7Kr\…
n4dWd9LHmz90Lx1WEJpGLsdzPzAvhqgAxlTYaIuB9pG/M+Rh5ep4ZRQArpvrl6yxL\…
njBWlPavDrsBnJjOwqB27G0inBsKro5d8qeGYmNyWC3cKP5aVZ9IoL/7XI7RLxEtp\…
nfRhMp1l9AmzDQpqAfGqPS1G5ziROPB7evSJBrP08An2o+w15I0CF89mjm9I8IsvW\n4QIDAQAB\n-----END PUBLIC …

KEY-----\n", !290…
require => Class['cvmfs::client'], !291

 } !292
!293
 file { '/etc/cvmfs/domain.d/fnaldata.gov.conf': !294

ensure => 'file', !295
content => 296

"CVMFS_PUBLIC_KEY=/etc/cvmfs/keys/fnaldata.gov.pub\nCVMFS_SERVER_URL='http://cvmfss1data.fnal.…
gov:8000/cvmfs/@fqrn@;http://hcc-cvmfs.unl.edu:8000/cvmfs/@fqrn@'\nCVMFS_HTTP_PROXY=DIRECT\…
nCVMFS_ALIEN_CACHE=/pnfs/fs/usr/cvmfs/fermicloud-alien-cache\nCVMFS_QUOTA_LIMIT=-1\…
nCVMFS_SHARED_CACHE=no\n", !…

require => Class['cvmfs::client'], !297
 } !298
!299
 file { ['/pnfs', '/pnfs/fs', '/pnfs/fs/usr', '/pnfs/fs/usr/cvmfs']: !300

ensure => 'directory', !301
 } !302
!303
 mount { '/pnfs/fs/usr/cvmfs': !304

device => 'pnfs-stken:/pnfs/fs/usr/cvmfs', !305
fstype => 'nfs4', !306
ensure => 'mounted', !307
options => 'minorversion=1', !308
atboot => 'true', !309
require => File['/pnfs/fs/usr/cvmfs'], !310

 } !311
!312
 yumrepo {'glideinwms': !313
 descr => 'Glideinwms repository 6 - i\$basearch', !314
 baseurl => 'http://fermigrid.fnal.gov/files/glideinwms/prod/6/\$basearch/', !315
 enabled => 1, !316
 gpgcheck => 0,; !317
 'glideinwms-dev': !318
 descr => 'Glideinwms dev repository 6 - \$basearch', !319
 baseurl => 'http://fermigrid.fnal.gov/files/glideinwms/dev/6/\$basearch/', !320
 enabled => 0, !321
 gpgcheck => 0, !322
 } !323

!324
 package { 'glideinwms-vm-one': !325
 ensure => 'installed', !326
 require => Yumrepo['glideinwms'], !327
 notify => Exec['/usr/sbin/ntpdate'], !328
 } !329
!330
 service {'glideinwms-pilot': !331
 ensure => 'running', !332
 enable => 'true', !333
 require => Exec['hktempoverwrite'], !334
 } !335
!336
 exec { 'hktempoverwrite': !337
 command => '/bin/mount -t iso9660 /dev/sr0 /mnt;/bin/cp -f /mnt/pilot-launcher 338
/usr/sbin/pilot-launcher; /bin/cp -f /mnt/mount_ephemeral …
/usr/libexec/glideinwms_pilot/PRE/mount_ephemeral; /bin/cp -f /mnt/config.py …
/usr/lib/python2.6/site-packages/glideinwms_pilot/config.py', !…
 require => Package['glideinwms-vm-one'], !339
 } !340
!341
 exec {'/usr/sbin/ntpdate': !342
 refreshonly => true, !343
 command => '/usr/sbin/ntpdate -s 131.225.82.122', !344
 require => [Service['glideinwms-pilot']] !345
 } !346
!347
!348
EOF !349
!350
!351
----------- !352
----------- !353
----------- !354
!355
!356
File: imagemanagement/step2/internal.py !357
#!/usr/bin/python !358

import time !359
import subprocess !360
!361
def main(): !362
 command0 = "service glideinwms-pilot status" !363
 with open('/tmp/hktesting.log', 'a') as my_log: !364
 retcode=subprocess.call(command0, shell=True, stdout=my_log) !365
 while retcode != 0: !366
 retcode=subprocess.call(command0, shell=True, stdout=my_log) !367
 print "retcode = ", retcode !368
 time.sleep(1) !369
!370
 with open('/tmp/hktesting.log', 'a') as my_log: !371
 my_log.write("HK glidein running, now trying to stop it") !372
!373
!374
 command1 = "service glideinwms-pilot stop" !375
 with open('/tmp/hktesting.log', 'a') as my_log: !376
 retcode = subprocess.call(command1, shell=True, stdout=my_log) !377
!378
!379
 with open('/tmp/hktesting.log', 'a') as my_log: !380
 retcode=subprocess.call(command0, shell=True, stdout=my_log) !381
 print "retcode = ", retcode !382
 while retcode != 3: !383
 retcode=subprocess.call(command0, shell=True, stdout=my_log) !384
 print "retcode = ", retcode !385
 time.sleep(1) !386
 with open('/tmp/hktesting.log', 'a') as my_log: !387
 my_log.write("HK glidein stopped") !388
!389
 command2 = "cat /dev/null > /var/log/glideinwms-pilot/pilot_launcher.log" !390
 command3 = "rm -f /tmp/ephemeral_storage.log" !391
 command4 = "umount /home && mv /home.orig/* /home && rmdir /home.orig" !392
!393
 with open('/tmp/hktesting.log', 'a') as my_log: !394
 retcode2 = subprocess.call(command2, shell=True, stdout=my_log) !395
 print "retcode 2 = ", retcode2 !396

 time.sleep(2) !397
 retcode3 = subprocess.call(command3, shell=True, stdout=my_log) !398
 print "retcode 3 = ", retcode3 !399
 time.sleep(2) !400
 retcode4 = subprocess.call(command4, shell=True, stdout=my_log) !401
 print "retcode 4 = ", retcode4 !402
 time.sleep(2) !403
!404
!405
 with open('/tmp/hktesting.log', 'a') as my_log: !406
 my_log.write("all jobs done and now shutting down now") !407
!408
 command5 = "shutdown -h now" !409
 with open('/tmp/hktesting.log', 'a') as my_log: !410
 retcode = subprocess.call(command5, shell=True, stdout=my_log) !411
!412
!413
if __name__ == "__main__": !414
 main() !415
!416
----------- !417
----------- !418
----------- !419
!420
!421
File: imagemanagement/step2/internal.sh !422
#!/bin/bash !423
nohup /mnt/internal.py > /dev/null & !424
!425
----------- !426
----------- !427
----------- !428
!429
!430
File: imagemanagement/step2/mount_ephemeral !431
#!/bin/bash !432
!433
!434

mount_ephemeral - Attempts to mount ephemeral storage !435
!436
!437
!438
!439
LOGFILE=/tmp/ephemeral_storage.log !440
VIRTUAL_DISKS="xvdf xvdb vda3 vdb sda2 sdb sdbc" !441
!442
echo "Attempting to mount ephemeral storage" | tee $LOGFILE !443
!444
if [! -d /home/scratchgwms]; then !445
 mkdir -v /home/scratchgwms 2>&1 | tee --append $LOGFILE !446
fi !447
!448
for VD in $VIRTUAL_DISKS ; do !449
 echo "Checking /dev/$VD ..." | tee --append $LOGFILE !450
 d=`date` !451
 fdisk -l /dev/$VD 2>/dev/null | grep Disk >> $LOGFILE !452
 if [$? -eq 0]; then !453
 echo "Virtual disk seen at /dev/$VD: $d" | tee $LOGFILE !454
!455
#HK hack begin !456

string1=`grep scratchgwms /etc/mtab` !457
if [-n "$string1"]; then !458
 echo "/home/scratchgwms is currently mounted" | tee --append $LOGFILE !459
 (cd /home/scratchgwms && rm -rf *) 2>&1 | tee --append $LOGFILE !460
 umount /home/scratchgwms 2>&1 | tee --append $LOGFILE !461
fi !462

!463
if [! -d /home/scratchgwms]; then !464

 mkdir -v /home/scratchgwms 2>&1 | tee --append $LOGFILE !465
fi !466

!467
 mount /dev/$VD /home/scratchgwms 2>&1 | tee --append $LOGFILE !468
#HK hack end !469
!470
 d=`date` !471
 echo "Done with /dev/$VD: $d" | tee --append $LOGFILE !472

 break !473
 else !474
 echo "No virtual disk seen at /dev/$VD: $d" | tee --append $LOGFILE !475
 fi !476
done !477
d=`date` !478
echo "Done: $d" | tee --append $LOGFILE !479
!480
----------- !481
----------- !482
----------- !483
!484
!485
File: imagemanagement/step2/pilot-launcher !486
#!/usr/bin/python !487
!488
import os !489
import subprocess !490
import signal !491
import urllib !492
from optparse import OptionParser !493
!494
from glideinwms_pilot.errors import PilotError !495
from glideinwms_pilot.errors import TimeoutError !496
from glideinwms_pilot.errors import ConfigError !497
from glideinwms_pilot.errors import ScriptError !498
!499
from glideinwms_pilot.vm_utils import chown !500
from glideinwms_pilot.vm_utils import chmod !501
from glideinwms_pilot.vm_utils import cd !502
from glideinwms_pilot.vm_utils import drop_privs !503
from glideinwms_pilot.vm_utils import shutdown_vm !504
from glideinwms_pilot.vm_utils import daemonize !505
from glideinwms_pilot.vm_utils import ls_files_sorted !506
from glideinwms_pilot.vm_utils import sleep !507
!508
from glideinwms_pilot.user_data import GlideinWMSUserData !509
!510

from glideinwms_pilot.config import Config !511
!512
from glideinwms_pilot.process_handling import execute_cmd !513
!514
def retrieve_glidein_startup(config): !515
 try: !516
 url = "%s/glidein_startup.sh" % config.factory_url !517
 script = "%s/glidein_startup.sh" % config.home_dir !518
 script, _ = urllib.urlretrieve(url, script) !519
 except Exception, ex: !520
 raise PilotError("Error retrieving glidein_startup.sh: %s\n" % str(ex)) !521
!522
def run_scripts(directory, log_writer, max_script_runtime=60, arguments=[]): !523
 try: !524
 script_list = ls_files_sorted(directory) !525
 except Exception, e: !526
 message = "An Error has occured retrieving scripts: %s" % str(e) !527
 raise ScriptError(message) !528
!529
 for script in script_list: !530
 try: !531
 cmd = "%s/%s" % (directory, script) !532
 log_writer.log_info("Executing script %s" % cmd) !533
 exit_code = execute_cmd(cmd, max_script_runtime, log_writer, !534
 arguments, os.environ) !535
 log_writer.log_info("Executing script %s ... DONE" % cmd) !536
 # have to mod 256 because on some systems, instead of !537
 # returning 0 on success, 256 is returned !538
 if not int(exit_code) % 256 == 0: !539
 message = "The script (%s) has exited with Exit Code: %s" % (cmd, 540
str(exit_code)) !…
 log_writer.log_err(message) !541
 except Exception, e: !542
 message = "An Error has occured attempting to run script: %s" \ !543
 "\n\nError: %s" % (cmd, str(e)) !544
 log_writer.log_err(message) !545
!546
!547

def main(): !548
 """ !549
 Perform all the work necessary to launch a glideinWMS pilot which will !550
 attempt to connect back to the user pool. !551
!552
 1) daemonize this script. This script is lauched via the *nix service !553
 mechanisms. We don't want to make it wait forever and we don't !554
 want it to be attached to a console. !555
 2) Get the user data that was passed to the AMI - Currently it is a !556
 tarball. !557
 3) untar the tarball. The tarball will contain a proxy, the !558
 glidein_startup.sh script and an ini file containing all the extra !559
 information needed !560
 4) read the ini file !561
 5) get the arguments for the glidein_startup.sh script !562
 6) create an environment string to pass with final command !563
 7) launch the glidein pilot with the appropriate environment !564
 """ !565
!566
 usage = "usage: %prog [options] [Site FQDN]" !567
 parser = OptionParser(usage=usage) !568
 parser.add_option("-d", "--disable-daemon", action="store_true", !569
 dest="disable_daemon", default=False, !570
 help="Disable the daemon functionality and run in "\ !571
 "terminal") !572
!573
 # if the directory, etc/glideinwms, does not exist lets assume that the !574
 # config file is in the same directory. We do this now so that this service !575
 # can be installed into CVMFS. This is a nasty hack that isn't portable in !576
 # the future, but is being done so that we can move forward. We assume !577
 # OpenStack since that is the current whim at CERN. !578
 init_config_directory = "/etc/glideinwms" !579
 if not os.path.exists(init_config_directory): !580
 init_config_directory = os.path.dirname(os.path.abspath(__file__)) !581
 parser.add_option("-c", "--config-file", dest="config_file", !582
 default="%s/glidein-pilot.ini" % init_config_directory, !583
 help="Specify a custom config file") !584
!585

 parser.add_option("-p", "--pid-file", dest="pid_file", !586
 default="/tmp/pilot.pid", help="Specify the pidfile") !587
!588
!589
 (options, args) = parser.parse_args() !590
!591
!592
 if options.disable_daemon: !593
 print "disable daemon call" !594
 else: !595
 daemonize(options.pid_file) !596
!597
 # If config fails, we need to write error to console if available !598
 try: !599
 config = Config(options.config_file) !600
 config.setup() !601
 try: !602
 # Change to the working directory -- GUARANTEE A KNOWN start dir !603
 config.log.log_info('Changing to: %s' % config.home_dir) !604
 cd(config.home_dir) !605
 config.log.log_info('Now in: %s' % config.home_dir) !606
!607
 # Run PRE scripts here !608
 message = "Running PRE Scripts in %s" % config.pre_script_dir !609
 config.log.log_info(message) !610
 run_scripts(config.pre_script_dir, config.log, !611
 float(config.max_script_runtime)) !612
 message = "Running PRE Scripts in ... DONE" !613
 config.log.log_info(message) !614
!615
 # Change to the working directory AGAIN -- IMPORTANT !616
 # Needed since PRE scripts may move the home area to a !617
 # bigger partition !618
 config.log.log_info('Changing to: %s' % config.home_dir) !619
 cd(config.home_dir) !620
 config.log.log_info('Now in: %s' % config.home_dir) !621
!622
 # get and extract the user data - should be a tar file !623

 config.log.log_info("Retrieving and extracting user data") !624
 userdata = GlideinWMSUserData(config) !625
 userdata.extract_user_data() !626
!627
 # Change the ownership of files in ~glidein_pilot before !628
 # dropping privileges !629
 chown('%s.%s' % (config.glidein_user, config.glidein_user), !630
 config.home_dir) !631
HK !632
 chown('%s.%s' % (config.glidein_user, config.glidein_user), !633
 config.scratch_dir) !634
HK-end !635
!636
 # drop privileges to the glidein user !637
 config.log.log_info("Dropping privs to %s" % config.glidein_user) !638
 drop_privs(config.glidein_user) !639
!640
 # get the glidein_startup.sh script !641
 config.log.log_info("Retrieving glidein_startup.sh") !642
 retrieve_glidein_startup(config) !643
 chmod(0755, "%s/glidein_startup.sh" % config.home_dir) !644
!645
 # configure pilot launch environment !646
 config.log.log_info("Configuring pilot environment...") !647
 config.log.log_info(" Username: %s" % config.glidein_user) !648
!649
 pilot_env = config.get_custom_env() !650
 config.log.log_info(" Environment: %s" % str(pilot_env)) !651
!652
 pilot_args = config.pilot_args.split() !653
 pilot_args.insert(0, "glidein_startup.sh") !654
 config.log.log_info("Pilot arguments: %s" % str(pilot_args)) !655
!656
 # launch the pilot !657
 # The pilot will only be allowed to run for config.max_lifetime !658
 # seconds before being terminated !659
 glidein_startup = "%s/glidein_startup.sh" % config.home_dir !660
 config.log.log_info("Launching Pilot (%s)..." % glidein_startup) !661

 _ = execute_cmd(glidein_startup, !662
 float(config.max_lifetime), config.log, !663
 pilot_args, pilot_env) !664
 except ScriptError, ex: !665
 message = "An Error has occured: %s" % str(ex) !666
 config.log.log_err(message) !667
 except PilotError, ex: !668
 message = "A PilotError has occured: %s" % str(ex) !669
 config.log.log_err(message) !670
 except Exception, ex: !671
 config.log.log_err("Error launching pilot: %s" % str(ex)) !672
 except ConfigError, ex: !673
 config.disable_shutdown = False !674
!675
 try: !676
 try: !677
 message = "Running Post Scripts in %s" % config.post_script_dir !678
 config.log.log_info(message) !679
 except: !680
 # If a config error occured orginally, then logging isn't !681
 # available. This is probably what brought us to this point !682
 pass !683
!684
 # Always run POST Scripts !685
 run_scripts(config.post_script_dir, config.log, !686
 float(config.max_script_runtime)) !687
!688
 try: !689
 message = "Running Post Scripts ... DONE." !690
 config.log.log_info(message) !691
 except: !692
 # If a config error occured orginally, then logging isn't !693
 # available. This is probably what brought us to this point !694
 pass !695
 except ScriptError, ex: !696
 try: !697
 message = "An Error has occured: %s" % str(ex) !698
 config.log.log_err(message) !699

 except: !700
 # If a config error occured orginally, then logging isn't !701
 # available. This is probably what brought us to this point !702
 pass !703
!704
 # No logging is available if the config.setup call errors, so don't try !705
 if config.disable_shutdown: !706
 print "shutdown disabled" !707
 else: !708
 ten_minutes = 600 # seconds !709
 sleep(ten_minutes) !710
 shutdown_vm(options.pid_file) !711
!712
if __name__ == "__main__": !713
 main() !714
!715
----------- !716
----------- !717
----------- !718
!719
!720
File: imagemanagement/step2/README !721
in fclheadgpvm01.fnal.gov, the following is there.. !722
!723
/etc/cron.d/step2_imaging !724
0 7 * * 1-5 root /opt/gcso/opennebula/imaging/step2_imaging_environ.sh !725
!726
/opt/gcso/opennebula/imaging/step2_imaging_environ.sh !727
!728
!729
/opt/gcso/opennebula/imaging/step2_imaging_external.py !730
!731
onetemplate list oneadmin !732
 185 oneadmin oneadmin make_prvm 09/02 12:53:39 !733
!734
/cloud/images/OpenNebula/scripts/one4.x/contextualization/hkpilot.sh !735
/cloud/images/OpenNebula/scripts/one4.x/contextualization/internal.sh !736
/cloud/images/OpenNebula/scripts/one4.x/contextualization/internal.py !737

!738
/cloud/images/OpenNebula/scripts/one4.x/contextualization/pilot-launcher !739
/cloud/images/OpenNebula/scripts/one4.x/contextualization/mount_ephemeral !740
/cloud/images/OpenNebula/scripts/one4.x/contextualization/config.py !741
The above 3 files will not be needed when I have closed the ticket 10389 to generate a new 742
glideinwms-vm-core 1.0.6 RPM !…
!743
INIT_SCRIPTS="init.sh credentials.sh kerberos.sh hkpilot.sh" !744
!745
 IMAGE="SLF6Vanilla", !746
!747
oneimage list oneadmin !748
 ID USER GROUP NAME DATASTORE SIZE TYPE PER STAT RVMS !749
 4 oneadmin oneadmin SLF6Vanilla cloud_imag 256G OS No used 197 !750
!751
!752
!753
/cloud/images/OpenNebula/scripts/one4.x/contextualization/hkpilot.sh is the puppet apply !754
!755
 exec { 'hktempoverwrite': !756
 command => ' !757
/bin/mount -t iso9660 /dev/sr0 /mnt; !758
/bin/cp -f /mnt/pilot-launcher /usr/sbin/pilot-launcher; !759
/bin/cp -f /mnt/mount_ephemeral /usr/libexec/glideinwms_pilot/PRE/mount_ephemeral; !760
/bin/cp -f /mnt/config.py /usr/lib/python2.6/site-packages/glideinwms_pilot/config.py !761
', !762
!763
!764
!765
!766
!767
/cloud/images/OpenNebula/scripts/one4.x/contextualization/glidein_startup.sh is not needed 768
any more. !…
!769
!770
!771
!772
!773

!774
----------- !775
----------- !776
----------- !777
!778
!779
File: imagemanagement/step2/step2_imaging_external.py !780
#!/usr/bin/env python !781
import string !782
import subprocess !783
import logging !784
import textwrap !785
import sys !786
import socket !787
import datetime !788
import time !789
import os !790
import time !791
try: !792
 import xml.etree.cElementTree as ET !793
except: !794
 import xml.etree.ElementTree as ET !795
!796
!797
def main(): !798
 my_env = os.environ.copy() !799
!800
 logging.basicConfig(level=logging.DEBUG, !801
 format='%(asctime)s %(levelname)-8s %(message)s', !802
 datefmt='%b %d %H:%M:%S', !803
 filename='/tmp/step2_image_convert.log') !804
!805
!806
!807
 subprocess.Popen(["onetemplate instantiate make_prvm --name 'step2-AWS' "], env=my_env, 808
stdout=subprocess.PIPE, shell=True) !…
!809
need to pause a bit here after onetemplate instantiate before we will be able to do onevm 810

show command !810…
 time.sleep(60) !811
!812
!813
 getxml = subprocess.Popen(["onevm show 'step2-AWS' --xml"], env=my_env, 814
stdout=subprocess.PIPE, shell=True) !…
 std_out_xml, std_err_xml = getxml.communicate() !815
 root = ET.fromstring(std_out_xml) !816
 vm_id = root.find('ID').text !817
 vm_state_text = root.find('STATE').text !818
 vm_state_int = int(vm_state_text) !819
!820
 logging.info('vm state = %s' % vm_state_text) !821
 logging.info('vm id = %s' % vm_id) !822
!823
 while vm_state_int != 3: !824
 logging.info('vm is not running yet, sleep 10 more seconds') !825
 time.sleep(5) !826
!827
 getxml = subprocess.Popen(["onevm show 'step2-AWS' --xml"], env=my_env, 828
stdout=subprocess.PIPE, shell=True) !…
 std_out_xml, std_err_xml = getxml.communicate() !829
 root = ET.fromstring(std_out_xml) !830
 vm_state_text = root.find('STATE').text !831
 vm_state_int = int(vm_state_text) !832
 logging.info('vm state = %s' % vm_state_text) !833
!834
 bare_metal_host = root.find('HISTORY_RECORDS/HISTORY/HOSTNAME') !835
 logging.info('VM is now running and its bare metal = %s' % bare_metal_host.text) !836
!837
#HK> new addition !838
 kvcommand = '/cloud/images/OpenNebula/scripts/one4.x/onehostname {vmid}'.format(839
vmid=vm_id) !…
 getip = subprocess.Popen(kvcommand, env=my_env, stdout=subprocess.PIPE, shell=True) !840
 std_out_ip, std_err_ip = getip.communicate() !841
 logging.info('vm ip address = %s' % std_out_ip.rstrip('\n')) !842
!843
 kvcommand2 = 'ssh -l root {vmip} uname -a'.format(vmip=std_out_ip.rstrip('\n')) !844

!845
 getkv = subprocess.Popen(kvcommand2, env=my_env, stdout=subprocess.PIPE, shell=True) !846
 std_out_pl, std_err_pl = getkv.communicate() !847
 pilotresult = std_out_pl.rstrip('\n') !848
 logging.info('pilot result = %s' % pilotresult) !849
!850
 while not pilotresult.startswith('Linux'): !851
 logging.info('vm does not have network, sleep 10 more seconds') !852
 time.sleep(10) !853
 getkv = subprocess.Popen(kvcommand2, env=my_env, stdout=subprocess.PIPE, shell=True) !854
 std_out_pl, std_err_pl = getkv.communicate() !855
 pilotresult = std_out_pl.rstrip('\n') !856
 logging.info('result inside while = %s' % pilotresult) !857
!858
 logging.info('Finally vm does have network, now we are getting the kernel version') !859
!860
 kvcommand3 = 'ssh -l root {vmip} uname -r'.format(vmip=std_out_ip.rstrip('\n')) !861
 getkv = subprocess.Popen(kvcommand3, env=my_env, stdout=subprocess.PIPE, shell=True) !862
 std_out_kv, std_err_kv = getkv.communicate() !863
 kernelresult = std_out_kv.rstrip('\n') !864
 logging.info('Kernel result = %s' % kernelresult) !865
!866
 with open('/tmp/kernelversion.txt', 'w') as hkmylog: !867
 hkmylog.write(kernelresult) !868
#HK> new addition !869
!870
 logging.info('vm is running and now we are waiting for it to go to poff by glideinwms 871
timeout mechanism') !…
the internal script will initiate the shutdown !872
now we wait until the vm does shut down which is executed by the second internal script !873
!874
 while vm_state_int != 8: !875
 logging.info("the vm is still not down") !876
 time.sleep(60) !877
!878
 getxml = subprocess.Popen(["onevm show 'step2-AWS' --xml"], env=my_env, 879
stdout=subprocess.PIPE, shell=True) !…
 std_out_xml, std_err_xml = getxml.communicate() !880

 root = ET.fromstring(std_out_xml) !881
 vm_state_text = root.find('STATE').text !882
 vm_state_int = int(vm_state_text) !883
!884
!885
 logging.info('vm is down now, we are going to copy the image out') !886
!887
now the VM is shutdown by the internal script, !888
this means the opennebula did not kill the VM, i.e. the VMHost still has the disk.0 file at 889
VMHost:/var/lib/one/datastores/100/VMID/ !…
!890
Now, we copy the disk.0 This is a potential risk, i.e. when /opt area does not have 891
sufficient space, this script will fail to copy out disk.0 from VMHost. !…
tmp_destination = "/cloud/images/hyunwoo/hkdisk.0" !892
 tmp_destination = "/opt/gcso/opennebula/imaging/tmp_step2.img" !893
 if os.path.exists(tmp_destination): !894
 os.remove(tmp_destination) !895
 logging.info('%s is deleted' % tmp_destination) !896
!897
 scp_value = "scp oneadmin@{hostname}:/var/lib/one/datastores/104/{vmid}/disk.0 898
{tmpimage}".format(tmpimage=tmp_destination, hostname=bare_metal_host.text, vmid=vm_id) !…
!899
 subprocess.check_call(scp_value, shell=True) !900
!901
 logging.info('copy the image out is complete') !902
 time.sleep(10) !903
!904
!905
We need to find out the image location !906
Now, we need to replace the old image with the new image: !907
 getxml = subprocess.Popen(["oneimage show 'SLF6_prvm' --xml"], env=my_env, 908
stdout=subprocess.PIPE, shell=True) !…
 std_out_xml, std_err_xml = getxml.communicate() !909
 root = ET.fromstring(std_out_xml) !910
 image_destination = root.find('SOURCE').text !911
!912
 get_date = datetime.date.today() !913
 mv_command = ("mv {tmpimage} {image}.new &&" !914

 " mv -f {image} {image}.{today} && " !915
 " mv {image}.new {image} && chown oneadmin:oneadmin " !916
 "{image} && chmod 660 {image} ").format (tmpimage=tmp_destination, 917
image=image_destination, today=str(get_date)) !…
!918
 subprocess.check_call(mv_command, shell=True) !919
!920
 logging.info('copy the image in the image repository is complete') !921
!922
#HK, can we delete the poff VM at the end of this script? !923
 subprocess.Popen(["onevm delete 'step2-AWS' "], env=my_env, stdin=subprocess.PIPE, 924
stdout=subprocess.PIPE, shell=True) !…
!925
 logging.info('onevm delete step2-AWS is complete') !926
!927
if __name__ == "__main__": !928
 main() !929
!930
!931
----------- !932
----------- !933
----------- !934
!935
!936
File: imagemanagement/step3/cloud.cfg !937
#Bare-bone cloud.cfg, add parameters as needed for FermiCloud !938
!939
user: root !940
!941
#If this is not explicitly false, cloud-init will change things so that root !942
#login via ssh is disabled. Set it false to allow root login via ssh keypair. !943
!944
disable_root: false !945
!946
#add additional cloud-init output logging !947
!948
output: {all: '| tee -a /var/log/cloud-init-output.log'} !949
!950

#Since cloud-init runs at multiple stages of boot, this needs to be set so !951
#it can log in all of them to /var/log/cloud-init. !952
!953
syslog_fix_perms: null !954
!955
#This is the piece that makes userdata work. You need this to have userdata !956
#scripts be run by cloud-init. !957
!958
datasource_list: [Ec2] !959
datasource: !960
 Ec2: !961
 metadata_urls: ['http://169.254.169.254'] !962
!963
#modules that run early in boot !964
!965
cloud_init_modules: !966
 - bootcmd #for running commands during boot. Commands can be defined in cloud-config 967
userdata. !…
!968
#modules that run after boot !969
!970
cloud_config_modules: !971
 - runcmd #like bootcmd, but runs after boot. Use this instead of bootcmd for after boot 972
processing. !…
!973
#modules that run at some point after config is finished !974
!975
cloud_final_modules: !976
 - scripts-per-once #all of these run scripts at specific events. Like bootcmd, can be 977
defined in cloud-config. !…
 - scripts-per-boot !978
 - scripts-per-instance !979
 - scripts-user !980
 - phone-home #if defined, can make a post request to a specified url when done booting !981
 - final-message #if defined, can write a specified message to the log !982
 - power-state-change #if defined, can trigger stuff based on power state changes !983
!984
system_info: !985

 distro: rhel !986
!987
vim:syntax=yaml !988
----------- !989
----------- !990
----------- !991
!992
!993
File: imagemanagement/step3/cms.cern.ch.local !994
export CMS_LOCAL_SITE="/etc/cvmfs/SITECONF/T3_US_HEP_Cloud" !995
----------- !996
----------- !997
----------- !998
!999
!1000
File: imagemanagement/step3/Convert-boto.py !1001
#!/usr/bin/env python !1002
encoding: utf-8 !1003
from hepcloud_imaging_boto import hepcloud_upload !1004
!1005
import sys !1006
import os !1007
import subprocess !1008
import logging !1009
import textwrap !1010
import datetime !1011
import time !1012
!1013
from argparse import ArgumentParser !1014
from argparse import RawDescriptionHelpFormatter !1015
!1016
__all__ = [] !1017
__version__ = 0.1 !1018
__date__ = '2014-07-15' !1019
__updated__ = '2014-07-15' !1020
!1021
DEBUG = 1 !1022
TESTRUN = 0 !1023

PROFILE = 0 !1024
!1025
class CLIError(Exception): !1026
 '''Generic exception to raise and log different fatal errors.''' !1027
 def __init__(self, msg): !1028
 super(CLIError).__init__(type(self)) !1029
 self.msg = "E: %s" % msg !1030
 def __str__(self): !1031
 return self.msg !1032
 def __unicode__(self): !1033
 return self.msg !1034
!1035
class Timer: !1036
 def __enter__(self): !1037
 self.start = time.time() !1038
 return self !1039
!1040
 def __exit__(self, *args): !1041
 self.end = time.time() !1042
 self.interval = self.end - self.start !1043
 !1044
def get_help(): !1045
 print "dummy help" !1046
 !1047
def copy_to_image_location(vm_script_location, vm_name, vm_image_location): !1048
 """ This function copies the selected Fermicloud VM image to a worker VM image. !1049
 """ !1050
 get_date = datetime.date.today() !1051
 time_differential = datetime.timedelta(days=7) !1052
 delete_date = str(get_date - time_differential) !1053
 logging.info("Start: Copying the selected Fermicloud VM image. Function 1054
copy_to_image_location.") !…
 """ Change to location of your scripts below. !1055
 """ !1056
 cp_command = (!1057
 "cp -f {v_script_location}/Fermi_AWS_Modifications.sh /data" !1058
 " && cp -f {v_script_location}/Fermi_AWS_Resize.sh /data" !1059
 " && cp -f {v_script_location}/hepcloud-init-workernode /data" # new by HK !1060

 " && cp -f {v_script_location}/cms.cern.ch.local /data" # new by HK !1061
 " && cp -f {v_script_location}/site-local-config.xml /data" # new by HK !1062
 " && cp -f {v_script_location}/storage.xml /data" # new by HK !1063
 " && cp -f {v_script_location}/ec2-get-ssh /data" !1064
 " && cp -f {v_script_location}/cloud.cfg /data" !1065
 " && kinit -k -t /var/adm/krb5/cloudadminpp.keytab 1066
cloudadmin/cron/fermicloudpp.fnal.gov@FNAL.GOV" !…
 " && scp {v_image_location} /data/{v_name}.qcow2tmp" !1067

).format (today=str(get_date), v_name=vm_name, 1068
v_script_location=vm_script_location, v_image_location=vm_image_location, remove=delete_date) !…
 with open('/opt/gcso/awsexport/aws_image_convert.log', 'a') as my_log: !1069
 !1070
 try: !1071
 with Timer() as t: !1072
 subprocess.check_call(cp_command, shell=True, stdout=my_log, stderr=my_log) !1073
 logging.info("Stop: Completed Copying the selected Fermicloud VM image. 1074
Function copy_to_image_location.") !…
 except: !1075
 logging.error("Couldn't copy image to temp area") !1076
 raise Exception("Couldn't copy image to temp area! Aborting.") !1077
 sys.exit(1) !1078
 finally: !1079
 min_interval = t.interval / 60 !1080
 print('Copying took %.03f minutes.' % min_interval) !1081
 !1082
def resize_image(vm_name): !1083
 """ This function resizes the worker Fermicloud VM image for AWS image import. !1084
 """ !1085
 get_date = datetime.date.today() !1086
 logging.info("Start: Resizing the worker Fermicloud VM image. Function resize_image.") !1087
 resize_command = (!1088
 "cd /data" !1089
 " && ./Fermi_AWS_Resize.sh {v_name}" !1090
 " && rm -f /data/Fermi_AWS_Resize.sh" !1091
).format (today=str(get_date), v_name=vm_name) !1092
 with open('/opt/gcso/awsexport/aws_image_convert.log', 'a') as my_log: !1093
 try: !1094
 with Timer() as t: !1095

 subprocess.check_call(resize_command, shell=True, stdout=my_log, 1096
stderr=my_log) !…
 logging.info("Stop: Completed Resizing the worker Fermicloud VM image. 1097
Function resize_image.") !…
 except: !1098
 logging.error("Couldn't resize image in temp area") !1099
 raise Exception("Couldn't resize image in temp area! Aborting.") !1100
 sys.exit(1) !1101
 finally: !1102
 min_interval = t.interval / 60 !1103
 print('Resizing took %.03f minutes.' % min_interval) !1104
!1105
def convert_image(vm_name, kernel_ver, eph_mount): !1106
 """ This function converts the worker Fermicloud VM image for AWS specifics. !1107
 """ !1108
 get_date = datetime.date.today() !1109
 logging.info("Start: Converting the worker Fermicloud VM image. Function convert_image.") !1110
 convert_command = (!1111

 "mkdir -p /data/work" !1112
 " && guestmount -a /data/{v_name}.raw -m /dev/sda1 /data/work" !1113
 " && mv /data/Fermi_AWS_Modifications.sh /data/work" !1114
 " && mv /data/hepcloud-init-workernode /data/work" # new by HK !1115
 " && mv /data/cms.cern.ch.local /data/work" # new by HK !1116
 " && mv /data/site-local-config.xml /data/work" # new by HK !1117
 " && mv /data/storage.xml /data/work" # new by HK !1118
 " && mv /data/ec2-get-ssh /data/work" !1119
 " && mv /data/cloud.cfg /data/work" !1120
 " && /usr/sbin/chroot /data/work ./Fermi_AWS_Modifications.sh 1121
{v_kernel_ver} {v_eph_mount}" !…
 " && sleep 10" !1122
 " && rm -f /data/work/Fermi_AWS_Modifications.sh && rm -f 1123
/data/work/ec2-get-ssh && rm -f /data/work/cloud.cfg" !…
 " && rm -f /data/Fermi_AWS_Modifications.sh && rm -f /data/ec2-get-ssh 1124
&& rm -f /data/cloud.cfg" !…
 " && fusermount -uz /data/work && rmdir /data/work" !1125
).format (today=str(get_date), v_name=vm_name, v_kernel_ver=kernel_ver, 1126
v_eph_mount=eph_mount) !…
 with open('/opt/gcso/awsexport/aws_image_convert.log', 'a') as my_log: !1127

 !1128
 try: !1129
 with Timer() as t: !1130
 subprocess.check_call(convert_command, shell=True, stdout=my_log, 1131
stderr=my_log) !…
 logging.info("Stop: Completed Converting the worker Fermicloud VM image. 1132
Function convert_image.") !…
 except: !1133
 logging.error("Couldn't convert image in temp area") !1134
 raise Exception("Couldn't convert image in temp area! Aborting.") !1135
 sys.exit(1) !1136
 finally: !1137
 min_interval = t.interval / 60 !1138
 print('Converting took %.03f minutes.' % min_interval) !1139
 !1140
def import_image(vm_name, aws_image_name): !1141
 get_date = datetime.date.today() !1142
 logging.info("Start: Importing the worker Fermicloud VM image. Function import_image.") !1143
 with open('/opt/gcso/awsexport/aws_image_convert.log', 'a') as my_log: !1144
 try: !1145
 with Timer() as t: !1146
 image_name = "/data/" + vm_name + ".raw" !1147
 print image_name !1148
 hepcloud_upload(image_name) !1149
 except: !1150
 logging.error("Couldn't import image to AWS") !1151
 raise Exception("Couldn't import image to AWS! Aborting.") !1152
 sys.exit(1) !1153
 finally: !1154
 min_interval = t.interval / 60 !1155
 print('Importing took %.03f minutes.' % min_interval) !1156
 !1157
def main(argv=None): !1158
 """ Change location of Log file. !1159
 """ !1160
 logging.basicConfig(level=logging.DEBUG, !1161
 format='%(asctime)s %(levelname)-8s %(message)s', !1162
 datefmt='%b %d %H:%M:%S', !1163

 filename='/opt/gcso/awsexport/aws_image_convert.log') !1164
 !1165
 my_env = os.environ.copy() !1166
!1167
 '''Command line options.''' !1168
!1169
 if argv is None: !1170
 argv = sys.argv !1171
 else: !1172
 sys.argv.extend(argv) !1173
 !1174
 get_help() !1175
 program_name = os.path.basename(sys.argv[0]) !1176
 program_version = "v%s" % __version__ !1177
 program_build_date = str(__updated__) !1178
 program_version_message = '%%(prog)s %s (%s)' % (program_version, program_build_date) !1179
 try: !1180
 with Timer() as t: !1181
 # Setup argument parser !1182
 parser = ArgumentParser(description="dummy licence", 1183
formatter_class=RawDescriptionHelpFormatter) !…
 parser.add_argument('-V', '--version', action='version', 1184
version=program_version_message) !…
 parser.add_argument(dest="cvm_script_location", help="Location of all scripts", 1185
metavar="cvm_script_location") !…
 parser.add_argument(dest="cvm_image_location", help="Location of Fermi Image", 1186
metavar="cvm_image_location") !…
 parser.add_argument(dest="ckernel_ver", help="Kernel version of Fermi Image", 1187
metavar="ckernel_ver") !…
 parser.add_argument(dest="cvm_name", help="Fermicloud VM name", 1188
metavar="cvm_name") !…
 parser.add_argument(dest="caws_image_name", help="AWS AMI VM name", 1189
metavar="caws_image_name") !…
 parser.add_argument(dest="caws_eph_mount", help="AWS ephemeral mount dir 1190
(/ephemeral_mount_dir or none)", metavar="caws_eph_mount") !…
 !1191
 # Process arguments !1192
 args = parser.parse_args() !1193

 cvm_script_location = args.cvm_script_location !1194
 cvm_image_location = args.cvm_image_location !1195
 ckernel_ver = args.ckernel_ver !1196
 cvm_name = args.cvm_name !1197
 caws_image_name = args.caws_image_name !1198
 caws_eph_mount = args.caws_eph_mount !1199
 !1200
 logging.info('Begin script run') !1201
 print("Arguments supplied:") !1202
 print("location of all files and scripts->", cvm_script_location) !1203
 print("location of fermicloud vm image->", cvm_image_location) !1204
 print("kernel version of fermicloud vm image->", ckernel_ver) !1205
 print("fermicloud vm image name->", cvm_name) !1206
 print("aws vm image name->", caws_image_name) !1207
 print("aws ephemeral mount->", caws_eph_mount) !1208
!1209
 print("Starting AWS VM conversion. This job can take up to 60 minutes for PV and 1210
84 for HVM...") !…
 print("Copying the Golden Fermicloud VM image takes under 1 minute...") !1211
 copy_to_image_location(cvm_script_location, cvm_name, cvm_image_location) !1212
 print("Resizing the worker Fermicloud VM image takes up to 20 minutes for PV and 1213
10 for HVM...") !…
 resize_image(cvm_name) !1214
 print("Converting the worker Fermicloud VM image takes over 24 minutes...") !1215
 convert_image(cvm_name, ckernel_ver, caws_eph_mount) !1216
 print("Importing the raw image to AWS takes up to 15 minutes for PV and 49 for 1217
HVM...") !…
 import_image(cvm_name, caws_image_name) !1218
!1219
 print("Completed AWS VM conversion.") !1220
 logging.info('End script run') !1221
 return 0 !1222
!1223
 except KeyboardInterrupt: !1224
 return 0 !1225
 except Exception, e: !1226
 if DEBUG or TESTRUN: !1227
 raise(e) !1228

 indent = len(program_name) * " " !1229
 sys.stderr.write(program_name + ": " + repr(e) + "\n") !1230
 sys.stderr.write(indent + " for help use --help") !1231
 return 2 !1232
 finally: !1233
 min_interval = t.interval / 60 !1234
 print('Job took %.03f minutes. Thank you.' % min_interval) !1235
!1236
!1237
if __name__ == "__main__": !1238
 sys.exit(main()) !1239
!1240
----------- !1241
----------- !1242
----------- !1243
!1244
!1245
File: imagemanagement/step3/ec2-get-ssh !1246
#!/bin/bash !1247
chkconfig: 2345 95 20 !1248
processname: ec2-get-ssh !1249
description: Capture AWS public key credentials for EC2 user !1250
!1251
Source function library !1252
. /etc/rc.d/init.d/functions !1253
!1254
Source networking configuration !1255
[-r /etc/sysconfig/network] && . /etc/sysconfig/network !1256
!1257
Replace the following environment variables for your system !1258
export PATH=:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin !1259
 !1260
Check that networking is configured !1261
if ["${NETWORKING}" = "no"]; then !1262
 echo "Networking is not configured." !1263
 exit 1 !1264
fi !1265
 !1266

start() { !1267
 if [! -d /root/.ssh]; then !1268
 mkdir -p /root/.ssh !1269
 chmod 700 /root/.ssh !1270
 fi !1271
 # Retrieve public key from metadata server using HTTP !1272
 curl -f http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key > 1273
/tmp/my-public-key !…
 if [$? -eq 0]; then !1274
 echo "EC2: Retrieve public key from metadata server using HTTP." !1275
 cat /tmp/my-public-key >> /root/.ssh/authorized_keys !1276
 chmod 600 /root/.ssh/authorized_keys !1277
 rm /tmp/my-public-key !1278
 fi !1279
} !1280
 !1281
stop() { !1282
 echo "Nothing to do here" !1283
} !1284
 !1285
restart() { !1286
 stop !1287
 start !1288
} !1289
 !1290
See how we were called. !1291
case "$1" in !1292
 start) !1293
 start !1294
 ;; !1295
 stop) !1296
 stop !1297
 ;; !1298
 restart) !1299
 restart !1300
 ;; !1301
 *) !1302
 echo $"Usage: $0 {start|stop|restart}" !1303

 exit 1 !1304
esac !1305
 !1306
exit $? !1307
----------- !1308
----------- !1309
----------- !1310
!1311
!1312
File: imagemanagement/step3/Fermi_AWS_Modifications.sh !1313
#!/bin/bash !1314
This is a script to add or modify several OS networking files required for the AWS image 1315
conversion !…
!1316
Remove glideinwms-vm-one (OpenNebula), if exists, and Install glideinwms-vm-ec2 (AWS) !1317
!1318
yum -y remove glideinwms-vm-one !1319
#yum -y install glideinwms-vm-core # removed by HK because we have not created a new RPM, but 1320
rather we are still overwriting 3 files after rpm install in the previous stage.. !…
yum -y install glideinwms-vm-ec2 !1321
!1322
Install cloud-init for aws metadata user data and scripts !1323
!1324
rpm -Uvh http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm !1325
yum -y install cloud-init cloud-utils !1326
!1327
#HK> python-backports-1.0-4.el6.x86_64.rpm is downloaded as dependency for cloud-init !1328
#HK> the following URL does not exist !1329
#HK> yum -y install 1330
http://repos.fedorapeople.org/repos/openstack/openstack-havana/epel-6/python-backports-1.0-4.…
el6.x86_64.rpm !…
!1331
yum -y install python-pip !1332
#pip install awscli !1333
!1334
!1335
cd / !1336
mv -f cloud.cfg /etc/cloud !1337

!1338
Modify ifcfg-eth0 !1339
cd /etc/sysconfig/network-scripts !1340
rm -f ifcfg-eth0 !1341
echo DEVICE=eth0 >> ifcfg-eth0 !1342
echo BOOTPROTO=dhcp >> ifcfg-eth0 !1343
echo ONBOOT=yes >> ifcfg-eth0 !1344
echo TYPE=Ethernet >> ifcfg-eth0 !1345
!1346
Modify network !1347
cd /etc/sysconfig !1348
rm -f network !1349
echo NETWORKING=yes >> network !1350
!1351
Remove fermi network resolv and hosts that AWS will not use !1352
cd /etc !1353
rm -f /etc/resolv.conf !1354
rm -f /etc/hosts !1355
rm -f /etc/hosts.allow !1356
rm -f /etc/hosts.deny !1357
!1358
echo " " >> /etc/hosts # added by HK/ST !1359
!1360
Remove fermi specifics that AWS will not use !1361
rm -f /etc/yp.conf !1362
These are no longer in the golden image by default !1363
Instead we have to actually make an auto.master !1364
!1365
cat > /etc/auto.master << EOF !1366
/misc /etc/auto.misc !1367
/net -hosts !1368
+auto.master !1369
/cvmfs /etc/auto.cvmfs !1370
EOF !1371
!1372
#rm -f /etc/auto.master !1373
#rm -f /etc/auto.misc !1374
#these 5 files are no longer used, !1375

the script name is vmcontext now but there is no !1376
reason to remove it because !1377
without opennebula style user data it will !1378
just not do anything !1379
#rm -f /etc/rc.d/rc3.d/K99.credentials !1380
#rm -f /etc/rc.d/rc3.d/S09one-context !1381
#rm -f /etc/rc.d/rc3.d/K84one-context !1382
#rm -f /etc/init.d/one-context !1383
#rm -f /etc/init.d/.credentials* !1384
!1385
Create grub.conf for AWS paravitual !1386
cd /boot/grub !1387
rm -f grub.conf !1388
echo default=0 >> grub.conf !1389
echo timeout=0 >> grub.conf !1390
echo 'title Scientific Linux Fermi ('$1')' >> grub.conf !1391
!1392
echo 'root (hd0,0)' >> grub.conf !1393
echo 'kernel /boot/vmlinuz-'$1' ro root=/dev/xvda1 rd_NO_PLYMOUTH' >> grub.conf !1394
!1395
echo 'initrd /boot/initramfs-'$1'.img' >> grub.conf !1396
!1397
Create symbolic link for boot !1398
cd /boot; ln -s . boot !1399
!1400
Create fstab for AWS paravirtual !1401
cd /etc !1402
rm -f fstab !1403
!1404
!1405
 echo '/dev/xvda1 / ext3 defaults 1 1' >> fstab !1406
Kirk original version !1407
#HK experiment $2 should be eph_mount set to /var/lib/cvmfs2 !1408
#HK> we are hardwiring /dev/xvdc which is based on how Fermi_AWS_Import.sh is using -b option 1409
to register_image !…
 if ["$2" != "none"]; then !1410
 mkdir -p $2 !1411
 echo 'CVMFS_CACHE_BASE='$2'' >>/etc/cvmfs/default.local !1412

 echo '/dev/xvdc '$2' ext3 defaults 0 0' >> fstab !1413
 fi !1414
!1415
echo 'tmpfs /dev/shm tmpfs defaults 0 0' >> fstab !1416
echo 'devpts /dev/pts devpts gid=5,mode=620 0 0' >> fstab !1417
echo 'sysfs /sys sysfs defaults 0 0' >> fstab !1418
echo 'proc /proc proc defaults 0 0' >> fstab !1419
!1420
Modify rc.local final init script to add additional ephemeral drive and mount scratch there !1421
#HK deleted completely in order to clear any confusion !1422
!1423
Modify sshd_config !1424
cd /etc/ssh !1425
rm -f sshd_config !1426
echo 'SyslogFacility AUTHPRIV' >> sshd_config !1427
echo 'RSAAuthentication no' >> sshd_config !1428
echo 'PubkeyAuthentication yes' >> sshd_config !1429
echo 'AuthorizedKeysFile .ssh/authorized_keys' >> sshd_config !1430
echo 'PasswordAuthentication yes' >> sshd_config !1431
echo 'KerberosAuthentication no' >> sshd_config !1432
echo 'KerberosOrLocalPasswd no' >> sshd_config !1433
echo 'KerberosTicketCleanup no' >> sshd_config !1434
echo 'GSSAPIAuthentication no' >> sshd_config !1435
echo 'GSSAPICleanupCredentials no' >> sshd_config !1436
echo 'UsePAM no' >> sshd_config !1437
echo 'AllowTcpForwarding yes' >> sshd_config !1438
echo 'X11Forwarding yes' >> sshd_config !1439
echo 'UseLogin no' >> sshd_config !1440
echo 'UseDNS no' >> sshd_config !1441
!1442
new by HK !1443
cd / !1444
new by ST/HK !1445
mv hepcloud-init-workernode /etc/rc.d/init.d/ # replacing S99local as ST wanted !1446
/bin/chmod 755 /etc/rc.d/init.d/hepcloud-init-workernode !1447
!1448
for Frontier !1449
mkdir -p /etc/cvmfs/SITECONF/T3_US_HEP_Cloud/JobConfig/ !1450

mkdir -p /etc/cvmfs/SITECONF/T3_US_HEP_Cloud/PhEDEx/ !1451
mv site-local-config.xml /etc/cvmfs/SITECONF/T3_US_HEP_Cloud/JobConfig/ !1452
mv storage.xml /etc/cvmfs/SITECONF/T3_US_HEP_Cloud/PhEDEx/ !1453
!1454
to set the correct squid server for /etc/cvmfs/default.local !1455
mkdir -p /etc/cvmfs/config.d/ !1456
mv cms.cern.ch.local /etc/cvmfs/config.d/ !1457
/sbin/chkconfig --add hepcloud-init-workernode !1458
end new by ST/HK !1459
!1460
modified on Sep 11 2015 !1461
rm -f /etc/grid-security/certificates/*.r0 !1462
/sbin/chkconfig fetch-crl-cron off !1463
/sbin/chkconfig fetch-crl-boot off !1464
!1465
!1466
Create ec2-get-ssh authenication script for public keypair !1467
cd / !1468
mv ec2-get-ssh /etc/init.d !1469
/bin/chmod +x /etc/init.d/ec2-get-ssh !1470
!1471
Modify /sbin/chkconfig services !1472
/sbin/chkconfig ec2-get-ssh on !1473
/sbin/chkconfig rpcbind off !1474
/sbin/chkconfig postfix off !1475
/sbin/chkconfig autofs off !1476
/sbin/chkconfig vmcontext off !1477
Prevent 10 minute automatic vm shutdown for testing (**turn back on after testing**) !1478
/sbin/chkconfig glideinwms-pilot off !1479
!1480
Clear history !1481
history -c !1482
!1483
cat /etc/cvmfs/default.local !1484
!1485
exit chroot !1486
exit !1487
!1488

----------- !1489
----------- !1490
----------- !1491
!1492
!1493
File: imagemanagement/step3/Fermi_AWS_Resize.sh !1494
#!/bin/bash !1495
This is a script to resize the converted image (accepts param $1=vmimage name $2="hvm") from 1496
a QCOW2 256G image down to a 12G primary partiton required for the AWS HVM image upload or a …
3G primary partiton for a AWS PV image upload !…
!1497
Remove previous raw image, if exists, and formats new raw image !1498
cd /data !1499
rm -f $1.raw !1500
!1501
Use guestfish to delete 2nd and 3rd partitions, if present, clean up count errors and resize 1502
primary partiton content (about 8.5 minutes) !…

guestfish -a $1.qcow2tmp <<_EOF1_ !1503
run !1504
part-del /dev/sda 2 !1505
part-del /dev/sda 3 !1506

EOF1 !1507
sleep 2 !1508

guestfish -a $1.qcow2tmp <<_EOF2_ !1509
run !1510
e2fsck-f /dev/sda1 !1511

EOF2 !1512
sleep 2 !1513

!1514
guestfish -a $1.qcow2tmp <<_EOF3_ !1515
run !1516
resize2fs-size /dev/sda1 6G !1517

EOF3 !1518
sleep 2 !1519
Resize boot partiton takes about 3.5 minutes !1520

qemu-img create -f raw $1.raw 6150M !1521
virt-resize --resize /dev/sda1=6G $1.qcow2tmp $1.raw !1522

!1523

Status of converted raw file !1524
qemu-img info $1.raw !1525
----------- !1526
----------- !1527
----------- !1528
!1529
!1530
File: imagemanagement/step3/hepcloud-init-workernode !1531
#!/bin/sh !1532
BEGIN INIT INFO !1533
chkconfig: 2345 27 25 !1534
Provides: hepcloud-init-workernode !1535
Required-Start: $local_fs $network !1536
Should-Start: $time !1537
Required-Stop: !1538
Should-Stop: !1539
Default-Start: 2 3 4 5 !1540
Default-Stop: 0 1 6 !1541
Short-Description: Fix host name and az-specific config files !1542
Description: Start cloud-init and runs the initialization phase !1543
and any associated initial modules as desired. !1544
#test !1545
END INIT INFO !1546
LOG="/var/log/hepcloud-init-workernode.log" !1547
RETVAL=0 !1548
!1549
prog="hepcloud-init-workernode" !1550
!1551
start() { !1552
!1553
touch /var/lock/subsys/hepcloud-init-workernode !1554
!1555
get the public hostname of the EC2 instance and change the !1556
output of the hostname command to match that. (needed for gridftp). !1557
!1558
mypublicip=`GET http://169.254.169.254/latest/meta-data/public-ipv4` !1559
myrc=$? !1560
if [$myrc -ne 0] !1561

then !1562
echo "My public IP not defined" >> $LOG !1563

 return 6 !1564
fi !1565
nslookup $mypublicip | grep "name =" | awk -F' ' '{print $4}' | sed 's/com\./com/' > 1566
/etc/hostname !…
myrc=$? !1567
if [$myrc -ne 0] !1568
then !1569
 echo "My public DNS name not defined" >> $LOG !1570
 return 7 !1571
fi !1572
hostname -F /etc/hostname !1573
!1574
This script modifies the CVMFS and Frontier scripts on VM startup !1575
to point to the ELB-enabled squid stack for the respective !1576
availability zone !1577
!1578
zone=$(curl -s http://169.254.169.254/latest/meta-data/placement/availability-zone) !1579
echo $zone !1580
echo $zone >> $LOG !1581
addr="http://elb2.$zone.elb.fnaldata.org:3128" #HK> export http_proxy does not like two 1582
back-slashes, I had to remove them !…
!1583
new code by ST and HK ## !1584
export http_proxy=$addr !1585
wget http://cvmfs.fnal.gov:8000/cvmfs/cms.cern.ch/.cvmfspublished !1586
returnvalue=$? !1587
if [$returnvalue -ne 0] !1588
then !1589

echo "Squid Server is not accessible in $zone, trying us-west-2b" >> $LOG !1590
!1591

if [$zone != "us-west-2b"] !1592
then !1593
 uswest2baddr="http://elb2.us-west-2b.elb.fnaldata.org:3128" !1594
 export http_proxy=$uswest2baddr !1595
 wget http://cvmfs.fnal.gov:8000/cvmfs/cms.cern.ch/.cvmfspublished !1596
 returnvalue=$? !1597

 if [$returnvalue -ne 0] !1598
 then !1599

echo "Squid Server is not accessible at all" >> $LOG !1600
return 11 !1601

 else !1602
echo "Squid Server is available in us-west-2b" >> $LOG !1603
addr="http:\/\/elb2.us-west-2b.elb.fnaldata.org:3128" !1604

 fi !1605
!1606

else !1607
 echo "Squid Server is not available even in us-west-2b" >> $LOG !1608
 return 11 !1609
fi !1610

!1611
else !1612

echo "Squid Server is available in $zone" >> $LOG !1613
addr="http:\/\/elb2.$zone.elb.fnaldata.org:3128" #HK> now, sed command below requires two 1614

back-slashes, I had restore them here. !…
fi !1615
END: new code by HK and ST ## !1616
!1617
!1618
make sure /etc/cvmfs/default.local is in place !1619
if [! -r /etc/cvmfs/default.local] !1620
then !1621

echo "/etc/cvmfs/default.local not found" >> $LOG !1622
 return 8 !1623
fi !1624
and modify !1625
sed -i -e "s/\(CVMFS_HTTP_PROXY=\).*/\1$addr/" /etc/cvmfs/default.local !1626
!1627
!1628
!1629
make sure /usr/bin/cvmfs_config is in place !1630
if [! -x /usr/bin/cvmfs_config] !1631
then !1632

echo "/usr/bin/cvmfs_config not executable" >> $LOG !1633
 return 9 !1634

fi !1635
and run it !1636
/usr/bin/cvmfs_config reload >> $LOG 2>&1 !1637
!1638
!1639
!1640
make sure /etc/cvmfs/SITECONF/local/JobConfig/site-local-config.xml is in place !1641
if [! -r /etc/cvmfs/SITECONF/T3_US_HEP_Cloud/JobConfig/site-local-config.xml] !1642
then !1643

echo "/etc/cvmfs/SITECONF/T3_US_HEP_Cloud/JobConfig/site-local-config.xml not found" >> 1644
$LOG !…
 return 10 !1645
fi !1646
and modify !1647
sed -i -e "s/\(<proxy url=\).*/\1\"$addr\"\/>/" 1648
/etc/cvmfs/SITECONF/T3_US_HEP_Cloud/JobConfig/site-local-config.xml !…
!1649
!1650
!1651
getting rid of the Fermi-specific crlsquid.fnal.gov and crl-cache.fnal.gov if it's there !1652
if [-r /etc/fetch-crl.conf] !1653
then !1654
 cp -p /etc/fetch-crl.conf /etc/fetch-crl.conf.fermisav !1655
 sed -i -e "s/\(http_proxy = \).*/\1$addr/" /etc/fetch-crl.conf !1656
 grep -v prepend_url /etc/fetch-crl.conf > /etc/fetch-crl.conf.temp !1657
 cp /etc/fetch-crl.conf.temp /etc/fetch-crl.conf !1658
start a fetch-crl now at S27 instead of enabling the fetch-crl-boot !1659
and throw it into background. !1660
!1661
commented out by HK/ST in order to make sure fetch-crl does not populate 1662
/etc/grid-security/certificates/ with *.r0 files !…
nohup /usr/sbin/fetch-crl < /dev/null >> $LOG 2>&1 & !1663
fi !1664
!1665
return 0 !1666
} !1667
!1668
stop() { !1669

!1670
rm /var/lock/subsys/hepcloud-init-workernode !1671
!1672
return 0 !1673
} !1674
!1675
case "$1" in !1676
 start) !1677
 start !1678
 RETVAL=$? !1679

;; !1680
 stop) !1681
 stop !1682
 RETVAL=$? !1683

;; !1684
 restart|try-restart|condrestart) !1685
 ## Stop the service and regardless of whether it was !1686
 ## running or not, start it again. !1687
 # !1688
 ## Note: try-restart is now part of LSB (as of 1.9). !1689
 ## RH has a similar command named condrestart. !1690
 start !1691
 RETVAL=$? !1692

;; !1693
 reload|force-reload) !1694
 # It does not support reload !1695
 RETVAL=3 !1696

;; !1697
 status) !1698
 echo -n $"Checking for service $prog:" !1699
 # Return value is slightly different for the status command: !1700
 # 0 - service up and running !1701
 # 1 - service dead, but /var/run/ pid file exists !1702
 # 2 - service dead, but /var/lock/ lock file exists !1703
 # 3 - service not running (unused) !1704
 # 4 - service status unknown :-(!1705
 # 5--199 reserved (5--99 LSB, 100--149 distro, 150--199 appl.) !1706
 RETVAL=3 !1707

;; !1708
 *) !1709
 echo "Usage: $0 1710
{start|stop|status|try-restart|condrestart|restart|force-reload|reload}" !…
 RETVAL=3 !1711

;; !1712
esac !1713
!1714
exit $RETVAL !1715
!1716
----------- !1717
----------- !1718
----------- !1719
!1720
!1721
File: imagemanagement/step3/hepcloud_imaging_boto.py !1722
import boto3 !1723
import sys !1724
import time !1725
import datetime !1726
import os.path !1727
!1728
from boto3.session import Session !1729
!1730
HK> we start with the IAM imaging user account, by using aws configure which will update or 1731
create /root/.aws/configure !…
and then, imaging user account will switch to the ManageVMRole role. !1732
!1733
def hepcloud_upload(rawfile_pathname): !1734
!1735
 if os.path.exists(rawfile_pathname): !1736
 print "%s Exists" % rawfile_pathname !1737
 else: !1738
 print "%s does not exist" % rawfile_pathname !1739
 return -1 !1740
!1741
upload the raw image to S3 bucket !1742
 rawfilepathname = rawfile_pathname # this might be a full path name !1743

 head,tail = os.path.split(rawfilepathname) !1744
head should be os.path.dirname(rawfilepathname) !1745
tail should be os.path.basename(rawfilepathname) !1746
 heps3key = tail # print 'hep3key = ', heps3key !1747
!1748
!1749
!1750
!1751
!1752
http://boto3.readthedocs.org/en/latest/reference/services/ !1753
!1754
!1755
possible arguments !1756
#1. 'ManageVMRole' !1757
#2. 'arn:aws:iam::159076985202:role/ManageVMRole' !1758
#3. 'vmimagemanagetestbucket' !1759
#4. HepCloud_Description = "" !1760
#5. HepCloud_AMI_Name = "" !1761
!1762
get_date = datetime.date.today() !1763
!1764
 HepCloud_Description = "HepCloud_Imaging_%s" % str(datetime.date.today()) !1765
 HepCloud_Tag = "HepCloud_%s" % str(datetime.date.today()) !1766
 HepCloud_AMI_Name = "HepCloud_AMI_%s" % str(datetime.date.today()) !1767
!1768
prerequisites !1769
arn:aws:iam::159076985202:role/ManageVMRole is created in our RnD account !1770
#1 check if RoleArn='arn:aws:iam::159076985202:role/ManageVMRole' exists !1771
 session = Session(profile_name = "rnd") !1772
 client = session.client('iam') !1773
 list_dir = client.list_roles() # list of dictionaries !1774
!1775
 rolename_list = [roledictionary['RoleName'] for roledictionary in list_dir['Roles']] !1776
 rolearn_list = [roledictionary['Arn'] for roledictionary in list_dir['Roles']] !1777
!1778
 if 'ManageVMRole' in rolename_list: !1779
 print "the role name %s exists " % 'ManageVMRole' !1780
 else: !1781

 print "the role name %s does not exist " % 'ManageVMRole' !1782
!1783
 if 'arn:aws:iam::159076985202:role/ManageVMRole' in rolearn_list: !1784
 print "the arn %s exists " % 'arn:aws:iam::159076985202:role/ManageVMRole' !1785
 else: !1786
 print "the arn %s does not exist" % 'arn:aws:iam::159076985202:role/ManageVMRole' !1787
!1788
!1789
S3 Resource !1790
 heps3bucket = 'vmimagemanagetestbucket' # this is fixed !1791
session = Session(profile_name="hwk") !1792
 client = session.client('s3') !1793
 list_dir = client.list_buckets() # 1794
http://boto3.readthedocs.org/en/latest/reference/services/s3.html#S3.Client.list_buckets !…
 bucket_list = list_dir['Buckets'] !1795
 namelist = [x['Name'] for x in bucket_list] !1796
 if heps3bucket in namelist: !1797
 print "our bucket %s exists" % heps3bucket !1798
 else: !1799
 print "our bucket %s does NOT exist" % heps3bucket !1800
!1801
!1802
!1803
!1804
!1805
!1806
using boto3 default session !1807
 client = boto3.client('sts') !1808
 print 'assume_role call' !1809
role switching !1810
 response = client.assume_role(RoleArn='arn:aws:iam::159076985202:role/ManageVMRole', 1811
RoleSessionName='sessiontest') !…
have to check if role-switching was successful !1812
 role_AK_id = response['Credentials']['AccessKeyId'] !1813
 role_AK_sc = response['Credentials']['SecretAccessKey'] !1814
 role_AK_tk = response['Credentials']['SessionToken'] !1815
!1816
!1817

!1818
!1819
!1820
!1821
!1822
!1823
!1824
New Session in West 2 !1825
 print 'Opening Session with temporary key' !1826
 session_w2 = Session(aws_access_key_id=role_AK_id, aws_secret_access_key=role_AK_sc, 1827
aws_session_token=role_AK_tk, region_name='us-west-2') # have to check of the session-creation …
was successful !…
!1828
!1829
!1830
back to ManageVMRole role !1831
 heps3 = session_w2.resource('s3') # session.client('s3') works but client.Object does not 1832
exist, only resource.Object.. !…
!1833
!1834
 hep3object = heps3.Object(heps3bucket , heps3key) #heps3.Object(heps3bucket , 1835
heps3key).put(Body=open(rawfilepathname, 'rb')) !…
 hep3object.upload_file(rawfilepathname) # hep3object.put(Body=open(rawfilepathname, 1836
'rb')) !…
 print 'put submitted, now calling wait_until_exists' !1837
 hep3object.wait_until_exists() # have to check if s3 put was initiatied successfully !1838
 print 'return from wait_until_exists' !1839
!1840
!1841
!1842
!1843
!1844
!1845
EC2 Client from the same West 2 session for Import Image !1846
 print "Now importing from S3 to AMI in West 2" !1847
 ec2_w2 = session_w2.client('ec2') !1848
!1849
 response = ec2_w2.import_image(!1850

 Description = HepCloud_Description, !1851
 DiskContainers = [{ !1852
 'Description': HepCloud_Description, !1853
 'UserBucket': { !1854
 'S3Bucket': heps3bucket, !1855
 'S3Key': heps3key !1856
 }, !1857
 },] !1858
) # end of import_image !1859
!1860
 ImportTaskId = response['ImportTaskId'] # print 'import task id = ', ImportTaskId !1861
!1862
!1863
!1864
now polling the import_image task !1865
 print "import task polling" !1866
 response = ec2_w2.describe_import_image_tasks(ImportTaskIds=[ImportTaskId]) !1867
 status=response['ImportImageTasks'][0]['Status'] !1868
!1869
 while status != 'completed': !1870
 time.sleep(60) !1871
 response=ec2_w2.describe_import_image_tasks(ImportTaskIds=[ImportTaskId]) !1872
 status=response['ImportImageTasks'][0]['Status'] !1873
 !1874
 print "finally" !1875
 print status !1876
polling is over !1877
!1878
!1879
!1880
Now, the AMI is available !1881
 response=ec2_w2.describe_import_image_tasks(ImportTaskIds=[ImportTaskId]) !1882
 AMI_W2 = response['ImportImageTasks'][0]['ImageId'] !1883
!1884
!1885
EC2 Resource from the same session for !1886
 print "Tagging West 2 AMI" !1887
 ec2_w2_resource = session_w2.resource('ec2') !1888

 hep_west2_image = ec2_w2_resource.Image(AMI_W2) !1889
 tag = hep_west2_image.create_tags(Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag },]) !1890
!1891
account sharing !1892
 print "Sharing West2 image with all other 3 accounts" !1893
 response = hep_west2_image.modify_attribute(Attribute='tags', OperationType='add', 1894
LaunchPermission={ 'Add': [{ 'UserId': '486926498429' }, { 'UserId': '950490332792' }, { …
'UserId': '229161804233' },] }) !…
in order to tag these shared AMI that are shared by other 3 accounts(CMS, NOVA, Fermilab) !1895
I need to open a new custom session with a profile !1896
/root/.aws/credentials must contain the following profiles !1897
 session_tmp_cms = Session(profile_name="cms") !1898
 session_tmp_nov = Session(profile_name="nova") !1899
 session_tmp_fna = Session(profile_name="fnal") !1900
 session_tmp_cms.resource('ec2', region_name='us-west-2').Image(AMI_W2).create_tags(1901
Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag },]) !…
 session_tmp_nov.resource('ec2', region_name='us-west-2').Image(AMI_W2).create_tags(1902
Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag },]) !…
 session_tmp_fna.resource('ec2', region_name='us-west-2').Image(AMI_W2).create_tags(1903
Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag },]) !…
!1904
!1905
!1906
!1907
!1908
A New Session for West 1 !1909
now copying !1910
 session_w1 = Session(aws_access_key_id=role_AK_id, aws_secret_access_key=role_AK_sc, 1911
aws_session_token=role_AK_tk, region_name='us-west-1') !…
 print "Now copying from W2 to W1" !1912
!1913
EC2 Client from West1 Session !1914
 ec2_w1_client = session_w1.client('ec2') !1915
 response_w1 = ec2_w1_client.copy_image(SourceRegion='us-west-2', 1916
SourceImageId=AMI_W2, Name=HepCloud_AMI_Name, Description=HepCloud_Description …
) !…
 print "W1 copy wait starts" !1917
 waiter_w1 = ec2_w1_client.get_waiter('image_available') !1918

 AMI_W1 = response_w1['ImageId'] !1919
 waiter_w1.wait(ImageIds = [AMI_W1]) !1920
 print "W1 copy wait ends" !1921
!1922
!1923
EC2 Resource from West1 Session !1924
 print "W1 tagging" !1925
 ec2_w1_resource = session_w1.resource('ec2') !1926
 hep_west1_image = ec2_w1_resource.Image(AMI_W1) !1927
 tag = hep_west1_image.create_tags(Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag }, 1928
]) !…
 print "W1 tagging successful" !1929
!1930
account sharing !1931
 print "Sharing West1 image with all other 3 accounts" !1932
 response = hep_west1_image.modify_attribute(LaunchPermission={ Attribute='tags', 1933
OperationType='add', 'Add': [{ 'UserId': '486926498429' }, { 'UserId': '950490332792' }, { …
'UserId': '229161804233' },] }) !…
 session_tmp_cms.resource('ec2', region_name='us-west-1').Image(AMI_W1).create_tags(1934
Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag },]) !…
 session_tmp_nov.resource('ec2', region_name='us-west-1').Image(AMI_W1).create_tags(1935
Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag },]) !…
 session_tmp_fna.resource('ec2', region_name='us-west-1').Image(AMI_W1).create_tags(1936
Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag },]) !…
!1937
!1938
!1939
!1940
!1941
A New Session for East 1 !1942
 print "Now copying from W2 to E1" !1943
 session_e1 = Session(aws_access_key_id=role_AK_id, aws_secret_access_key=role_AK_sc, 1944
aws_session_token=role_AK_tk, region_name='us-east-1') !…
!1945
EC2 Client from East 1 Session !1946
 ec2_e1_client = session_e1.client('ec2') !1947
 response_e1 = ec2_e1_client.copy_image(SourceRegion='us-west-2', 1948
SourceImageId=AMI_W2, Name=HepCloud_AMI_Name, Description=HepCloud_Description) !…

 print "E1 copy wait starts" !1949
 waiter_e1 = ec2_e1_client.get_waiter('image_available') !1950
 AMI_E1 = response_e1['ImageId'] !1951
 waiter_e1.wait(ImageIds=[AMI_E1]) !1952
 print "E1 copy wait endss" !1953
!1954
EC2 Resource from East 1 Session !1955
 print "E1 tagging" !1956
 ec2_e1_resource = session_e1.resource('ec2') !1957
 hep_east1_image = ec2_e1_resource.Image(AMI_E1) !1958
 tag = hep_east1_image.create_tags(Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag }, 1959
]) !…
 print "E1 tagging ends" !1960
!1961
!1962
account sharing !1963
 print "Sharing East1 image with all other 3 accounts" !1964
 response = hep_east1_image.modify_attribute(LaunchPermission={ Attribute='tags', 1965
OperationType='add', 'Add': [{ 'UserId': '486926498429' }, { 'UserId': '950490332792' }, { …
'UserId': '229161804233' },] }) !…
 session_tmp_cms.resource('ec2', region_name='us-east-1').Image(AMI_E1).create_tags(1966
Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag },]) !…
 session_tmp_nov.resource('ec2', region_name='us-east-1').Image(AMI_E1).create_tags(1967
Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag },]) !…
 session_tmp_fna.resource('ec2', region_name='us-east-1').Image(AMI_E1).create_tags(1968
Tags=[{ 'Key': 'Name', 'Value': HepCloud_Tag },]) !…
!1969
!1970
!1971
!1972
!1973
!1974
!1975
!1976
def hepcloud_main(argv=None): !1977
 hepcloud_upload(argv[1]) !1978
if __name__ == "__main__": !1979
 argv = sys.argv !1980

 hepcloud_main(argv) !1981
!1982
----------- !1983
----------- !1984
----------- !1985
!1986
!1987
File: imagemanagement/step3/README !1988
mkdir /opt/gcso/awsexport/ !1989
mkdir /data/ !1990
!1991
!1992
----------- !1993
----------- !1994
----------- !1995
!1996
!1997
File: imagemanagement/step3/run-boto.sh !1998
#!/bin/bash !1999
!2000
description of positional arguments !2001
1. /opt/gcso/awsexport : the directory where the codes will find everything !2002
2. oneadmin@fclheadgpvm01:/var/lib/one/datastores/102/f42715e37dbbe858af596dfe8827be02 : the 2003
source qcow2 image in FermiCloud Image Repository !…
3. $newkernelversion : I need to check again, with boto we might not need this parameter any 2004
longer. It used to be required by the old ec2iin command !…
4. newtest : name of the image files qcow2 and raw !2005
5. ManageVMRole-Test : a string for AWS description !2006
6. /var/cache/cvmfs2 : when you are using certain instance types of AWS(c3.large), the 2007
second ephemeral store will be available as /dev/xvdc, and we are using it for CVMFS cache !…
- mkdir -p /var/cache/cvmfs2 in the image !2008
- echo 'CVMFS_CACHE_BASE='$2'' >>/etc/cvmfs/default.local !2009
- echo '/dev/xvdc '$2' ext3 defaults 0 0' >> fstab !2010
!2011
kinit -k -t /var/adm/krb5/cloudadminpp.keytab 2012
cloudadmin/cron/fermicloudpp.fnal.gov@FNAL.GOV !…
newkernelversion=`ssh -l oneadmin fclheadgpvm01.fnal.gov cat /tmp/kernelversion.txt` !2013
echo $newkernelversion !2014

/opt/gcso/awsexport/Convert-boto.py /opt/gcso/awsexport 2015
oneadmin@fclheadgpvm01:/var/lib/one/datastores/102/f42715e37dbbe858af596dfe8827be02 …
$newkernelversion newtest ManageVMRole-Test /var/cache/cvmfs2 !…
!2016
----------- !2017
----------- !2018
----------- !2019
!2020
!2021
File: imagemanagement/step3/site-local-config.xml !2022
<site-local-config> !2023
<site name="T3_US_HEP_Cloud"> !2024
 <event-data> !2025
 <catalog 2026
url="trivialcatalog_file:/cvmfs/cms.cern.ch/SITECONF/local/PhEDEx/storage.xml?protocol=xrd"/> !…
 <catalog 2027
url="trivialcatalog_file:/cvmfs/cms.cern.ch/SITECONF/local/PhEDEx/storage.xml?protocol=…
fallbackxrd"/> !…
 </event-data> !2028
 <source-config> !2029
 <!--statistics-destination name="cms-udpmon-collector.cern.ch:9331" /--> !2030
 </source-config> !2031
 <local-stage-out> !2032
 <se-name value="cmssrmdisk.fnal.gov"/> !2033
 <command value="stageout-xrdcp-fnal"/> !2034
 <catalog 2035
url="trivialcatalog_file:/cvmfs/cms.cern.ch/SITECONF/local/PhEDEx/storage.xml?protocol=…
writexrd"/> !…
 <phedex-node value="T3_US_HEP_Cloud"/> !2036
 </local-stage-out> !2037
 <calib-data> !2038
 <frontier-connect> !2039
 <load balance="proxies"/> !2040
 <proxy url="http://AMAZON.URL.GOES.HERE:3128"/> !2041
 <backupproxy url="http://cmsbproxy.fnal.gov:3128"/> !2042
 <backupproxy url="http://cmsbproxy01.fnal.gov:3128"/> !2043
 <backupproxy url="http://cmsbproxy02.fnal.gov:3128"/> !2044
 <server url="http://cmsfrontier.cern.ch:8000/FrontierInt"/> !2045

 <server url="http://cmsfrontier.cern.ch:8000/FrontierInt"/> !2046
 <server url="http://cmsfrontier1.cern.ch:8000/FrontierInt"/> !2047
 <server url="http://cmsfrontier2.cern.ch:8000/FrontierInt"/> !2048
 <server url="http://cmsfrontier3.cern.ch:8000/FrontierInt"/> !2049
 <server url="http://cmsfrontier4.cern.ch:8000/FrontierInt"/> !2050
 </frontier-connect> !2051
 </calib-data> !2052
</site> !2053
</site-local-config> !2054
!2055
----------- !2056
----------- !2057
----------- !2058
!2059
!2060
File: imagemanagement/step3/storage.xml !2061
<storage-mapping> !2062
!2063
<!-- PRODUCTION BEGIN --> !2064
!2065
<!-- Xrootd --> !2066
<lfn-to-pfn protocol="xrd" !2067
 destination-match=".*" path-match="^/+store/unmerged/(.*)" 2068
result="root://cmseos.fnal.gov//lustre/unmerged/$1"/> !…
!2069
<lfn-to-pfn protocol="xrd" !2070
 destination-match=".*" path-match="/+lustre/(.*)" 2071
result="root://cmseos.fnal.gov//lustre/$1"/> !…
!2072
<lfn-to-pfn protocol="fallbackxrd" !2073
 destination-match=".*" path-match="/+lustre/(.*)" 2074
result="root://cmseos.fnal.gov//lustre/$1"/> !…
!2075
<lfn-to-pfn protocol="writexrd" !2076
 destination-match=".*" path-match="/+lustre/(.*)" 2077
result="root://cmseos.fnal.gov//lustre/$1"/> !…
<lfn-to-pfn protocol="writexrd" !2078
 destination-match=".*" path-match="/+store/temp/user/(.*)" 2079

result="root://cmseos.fnal.gov//eos/uscms/store/temp/user/$1"/> !2079…
<lfn-to-pfn protocol="writexrd" !2080
 destination-match=".*" path-match="/+store/unmerged/(.*)" 2081
result="root://cmseos.fnal.gov//lustre/unmerged/$1"/> !…
!2082
<lfn-to-pfn protocol="writexrd" !2083
 path-match="^/+lustre/unmerged/logs/prod/(.*)" 2084
result="root://cmseos.fnal.gov//lustre/unmerged/logs/prod/$1"/> !…
!2085
</storage-mapping> !2086
!2087
!2088
----------- !2089
----------- !2090
----------- !2091
!2092
!2093

2094

