Abstract – The nature of data that is generated by scientific experiments and the computing power required by them are often unpredictable. In order to fulfil the needs of all experiments of all sizes in the spectrum in the most optimal way, the scientific computing division decided to go for hybrid clouds which is a composition of both public and private clouds which remain unique entities but essentially perform the tasks in unison to complete the jobs. A service called GlideinWMS decides whether the job should be sent to private or public cloud depending on results of the decision engine. The intent of this project is to configure a frontier squid server and CVMFS clients on EC2 instances and utilize various services provided by AWS to build the infrastructure (stack) and perform load testing on the squid servers. Since CVMFS is huge only the files that are required for a particular job are fetched/downloaded from the read only server to the client in which CVMFS is already installed. A squid server that is placed in between acts as a proxy server thereby reducing the time taken to fetch the data and networking overhead. The squid server to be used for a client are depends on which region the client is running. The number of squid servers will scale up or down based on the network out bandwidth given by the squid.CVMFS and Frontier Squid Server Configuration and Load Testing on Amazon Web Services
Rahul Krishnamurthy* Steven Timm† Gabriele Garzoglio† Dr. Ioan Raicu*
rahul013k@gmail.com timm@fnal.gov garzogli@.fnal.gov iraicu@cs.iit.edu
*Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA
†Scientific Computing Division, Fermi National Accelerator Laboratory, Batavia IL, USA

1. Introduction
Amazon Elastic Compute Cloud (AmazonEC2) is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers. Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction. It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment. Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change. Amazon EC2 changes the economics of computing by allowing you to pay as you use.
The services that were used for the project that are provided by amazon are
Elastic Load Balancer: Elastic Load Balancing automatically distributes incoming application traffic across multiple Amazon EC2 instances in the cloud. It enables you to achieve greater levels of fault tolerance in your applications, seamlessly providing the required amount of load balancing capacity needed to distribute application traffic.
Auto-scaling groups: Auto Scaling helps you maintain application availability and allows you to scale your Amazon EC2 capacity up or down automatically according to conditions you define. You can use Auto Scaling to help ensure that you are running your desired number of Amazon EC2 instances. Auto Scaling can also automatically increase the number of Amazon EC2 instances during demand spikes to maintain performance and decrease capacity during lulls to reduce costs.
Route 53: Amazon Route 53 is a highly available and scalable cloud Domain Name System (DNS) web service. It is designed to give developers and businesses an extremely reliable and cost effective way to route end users to Internet applications by connecting user requests to infrastructure running in AWS – such as Amazon EC2 instances, Elastic Load Balancing load balancers, or Amazon S3 buckets – and can also be used to route users to infrastructure outside of AWS.
Cloud-Watch: Amazon Cloud-Watch is a monitoring service for AWS cloud resources and the applications you run on AWS. You can use Amazon Cloud-Watch to collect and track metrics, collect and monitor log files, and set alarms. You can use Amazon Cloud-Watch to gain system-wide visibility into resource utilization, application performance, and operational health.
Cloud-Formation: AWS Cloud-Formation gives developers and systems administrators an easy way to create and manage a collection of related AWS resources, provisioning and updating them in an orderly and predictable fashion. We can deploy and update a template and its associated collection of resources (called a stack) in JSON or text format. It is used to setup the entire infrastructure and manage it in the same console.
CERN Virtual Machine File System (CVMFS)
The CernVM File System (CernVM-FS) provides a scalable, reliable and low maintenance software distribution service. It was developed to assist High Energy Physics (HEP) collaborations to deploy software on the worldwide-distributed computing infrastructure used to run data processing applications. CernVM-FS is implemented as a POSIX read-only file system in user space (a FUSE module). Files and directories are hosted on standard web servers and mounted in the universal namespace /cvmfs. Internally, it uses content-addressable storage and Merkle trees in order to maintain file data and meta-data. CernVM-FS uses outgoing HTTP connections only, thereby it avoids most of the firewall issues of other network file systems. It is actively used by small and large HEP collaborations. This is installed in the clients during boot time.

Frontier-Squid
The Frontier distributed database caching system distributes data from data sources to many clients around the world. The name comes from "N Tier" where N is any number and Tiers are layers of locations of distribution. The protocol is http-based and uses a RESTful architecture which is excellent for caching and scales well. The Frontier system uses the standard web caching tool squid to cache the http objects at every site. It is ideal for applications where there are large numbers of widely distributed clients that read basically the same data at close to the same time, in much the same way that popular websites are read by many clients.
The frontier-squid software package is a patched version of the standard squid http proxy cache software, pre-configured for use by the Frontier distributed database caching system.
2. Initial Requirements and Setup
Scientific Linux 5/6 with root access
Sufficient (~20GB+20%) cache space reserved
autofs and fuse
The first step is to configure frontier squid in an EC2 instance and create an image (AMI) so that it can be used by the auto-scaling group. Next, configure CVMFS client in an EC2 instance and save it as an AMI. The tutorial to set up frontier squid and CVMFS can be found
CVMFS https://twiki.grid.iu.edu/bin/view/Documentation/Release3/InstallCvmfs#4_3_Configuring_cvmfs
http://cernvm.cern.ch/portal/cvmfs/examples
Frontier-squid
https://twiki.grid.iu.edu/bin/view/Documentation/Release3/InstallFrontierSquid#3_About_Frontier_Squid
https://twiki.cern.ch/twiki/bin/view/Frontier/MyOwnSquid
https://twiki.grid.iu.edu/bin/view/Documentation/Release3/InstallBestPractices
3. Design and Architecture
The entire infrastructure setup of the project is done by cloud formation with the AMI’s that are created. All the services that were explained work together in unison to complete the jobs given by the client/worker nodes. The architecture of the setup is given below.

Auto-Scaling Group

Fig 1- CVMFS client/server Architecture on AWS
As shown in the figure the clients directly contact the URL which points to the load balancer which in turn points to the squid. The initial state of the system has only a single squid server which does most of the heavy lifting and it scales up when the network out bandwidth of the squid is more than a threshold that we set for a particular amount of time, similarly when they are idle for some time they are automatically scale down. This operation is taken care by the Auto-scaling group. Cloud-watch monitors all the metrics of the squid server and triggers an alarm which starts up a new instance which is a squid server. The setup will be organized in such a way that each availability zone has a similar stack and performs the same functions.
4. Scripts to be used for deployment
· The Cloud formation template (autoscaling-squids.txt) can be found in the ‘/project’ folder, which has to be uploaded in the console to create the stack.
· There is a script that has to be run on the client that will find the availability zone in which it is launched and it will assign its HTTP Proxy to the URL of load balancer in the respective zone. It can be found in the folder project/scripts.
· The scripts that were used for testing the squid are already present in the client AMI. It can be found in ‘/cvmfsload’ (largequery and smallquery)
· The script to modify the http_proxy of largequery and smallquery can be found in ‘/project/scripts’

5. Implementation
The primary goal of this project is to find the type of EC2 instance that can give the best performance for its cost. This can be figured out by load testing different types of instances, obtain the results and compare them. The testing is done using instances m3.large and m3.xlarge. They are tested using the scripts (largequery and smallquery) which are used to obtain the network bandwidth and number of requests to the load balancer respectively.
The next step is to run the tests and monitor the results in cloud-watch. The results were recorded in the spreadsheet and the network out bandwidth was calculated in MBits/sec.
6. Results and Conclusions
The results of two instances are below

m3.large gave network out up to 700 MBits/sec for 1 – 8 clients.

[bookmark: _GoBack]m3.xlarge gave almost 1 GBit/sec for 16 clients and moreover it had 40 GB storage and four cores which is way more than m3.medium. Since it gave a better performance m3.xlarge was the most optimum instance that could be used as a squid server according to the requirement of 56K cores. This also shows that as we scale up the performance/throughput gets better.
[image:]
The test on load balancer using small query also showed that the can accept more than 500,000 requests per minute and also proves that load balancer cannot be the bottleneck.
The detailed results and graph can be found in the spreadsheet ‘Load-tests-squid’ in the ‘/project’ folder.

7. References
https://aws.amazon.com/

8. Possible Troubleshooting Issues
· IP tables should be turned off/removed in both client and server after the setup if the client is not able to reach the squid server.
· There should be enough space (at least 20GB) and 25% more for the cache in the client instance. It can be modified in default.local. Therefore create an instance with atleast 30GB HDD.
· Edit customize.sh in frontier squid, not squid.conf
· Reload every time you make any changes to the squid

Clients

Route 53

ELB

Squid

CVMFS server

Network Out m3.large

445.14301770528158	682.81464246114092	660.1693013509115	670.28313967386885	670.89512672424314	672.42821362813311	670.97031911214196	669.86780675252282	669.81333033243811	668.04467697143559	500.89102274576823	Minutes

Mbits/s

Network Out
16 Clients - 3 Squids

Squid 1 	0.70138888888888884	0.70208333333333339	0.70277777777777783	0.70347222222222217	0.70416666666666661	0.70486111111111116	0.7055555555555556	0.70624999999999993	0.70694444444444438	0.70763888888888893	0.70833333333333337	0.7090277777777777	0.70972222222222225	0.7104166666666667	0.71111111111111114	0.71180555555555547	0.71250000000000002	0.71319444444444446	0.71388888888888891	0.71458333333333324	0.71527777777777779	0.71597222222222223	0.71666666666666667	0.71736111111111101	0.71805555555555556	0.71875	0.71944444444444444	0.72013888888888899	0.72083333333333333	5.1879882812499999E-5	144.2131575267	1025.8972722372	1019.1230958303	1035.1935147603001	1016.665034612	1007.4746891022	1024.5404362997001	1008.6166829427	1008.0352863312	1022.6789141337	1005.517866389	1004.1459250132	1023.837583669	1001.9439592997001	1001.5695598602	1001.7409222921	1018.3269906362	1002.0583155314	1005.0185610453	1017.2010887146	995.97983576460001	979.48265698750004	640.33788706459995	1.50390625E-2	5.2246094E-3	1.7801920572916702E-5	6.0526529947916702E-5	1.7707825E-3	Squid 2	0.70138888888888884	0.70208333333333339	0.70277777777777783	0.70347222222222217	0.70416666666666661	0.70486111111111116	0.7055555555555556	0.70624999999999993	0.70694444444444438	0.70763888888888893	0.70833333333333337	0.7090277777777777	0.70972222222222225	0.7104166666666667	0.71111111111111114	0.71180555555555547	0.71250000000000002	0.71319444444444446	0.71388888888888891	0.71458333333333324	0.71527777777777779	0.71597222222222223	0.71666666666666667	0.71736111111111101	0.71805555555555556	0.71875	0.71944444444444444	0.72013888888888899	0.72083333333333333	0	0	0	0	1.1474609E-3	171.71642367050001	940.58652407329998	957.00740038549998	936.96809209189996	952.49457766219996	936.81881319679997	954.30851783749995	942.86359100339996	953.78931961060005	941.32914848329995	957.23326339719995	941.75937894189997	941.28097763059998	958.09522984820001	941.86406021120001	957.39409357709997	938.88331451420004	886.18779271439996	528.83575744630002	5.8492000000000002E-5	6.9173177083333304E-5	8.2397460937500005E-5	7.4768066406250005E-5	8.2397460937500005E-5	Squid 3	0.70138888888888884	0.70208333333333339	0.70277777777777783	0.70347222222222217	0.70416666666666661	0.70486111111111116	0.7055555555555556	0.70624999999999993	0.70694444444444438	0.70763888888888893	0.70833333333333337	0.7090277777777777	0.70972222222222225	0.7104166666666667	0.71111111111111114	0.71180555555555547	0.71250000000000002	0.71319444444444446	0.71388888888888891	0.71458333333333324	0.71527777777777779	0.71597222222222223	0.71666666666666667	0.71736111111111101	0.71805555555555556	0.71875	0.71944444444444444	0.72013888888888899	0.72083333333333333	0	0	0	0	0	0	0	0	0	0	1.6572316000000001E-3	167.06060129799999	952.43237813309997	932.67025286360001	935.82961794539995	941.98704172769999	960.96265029910001	942.68090642289997	942.41118952429997	943.47019551599999	941.10621376040001	942.85683809919999	859.94729983009995	526.42737909949994	2.649943E-4	1.0274249999999999E-4	8.8500999999999999E-5	6.0145060221354197E-5	Time

Network Out(MBits/sec)

image1.png

