CVMFS and Frontier Squid Server Configuration and Load Testing on

Amazon Web Services

Rahul Krishnamurthy* Steven TimmT Gabriele Garzogliot Dr. loan Raicu*
rahul013k@gmail.com timm@fnal.gov garzogli@.fnal.gov iraicu@cs.iit.edu
*Department of Computer Science, lllinois Institute of Technology, Chicago IL, USA
tScientific Computing Division, Fermi National Accelerator Laboratory, Batavia IL, USA

Abstract — The nature of data that is generated
by scientific experiments and the computing
power required by them are often unpredictable.
In order to fulfil the needs of all experiments of
all sizes in the spectrum in the most optimal way,
the scientific computing division decided to go
for hybrid clouds which is a composition of both
public and private clouds which remain unique
entities but essentially perform the tasks in
unison to complete the jobs. A service called
GlideinWMS decides whether the job should be
sent to private or public cloud depending on
results of the decision engine. The intent of this
project is to configure a frontier squid server and
CVMFS clients on EC2 instances and utilize
various services provided by AWS to build the
infrastructure (stack) and perform load testing
on the squid servers. Since CVMFS is huge only
the files that are required for a particular job are
fetched/downloaded from the read only server to
the client in which CVMFS is already installed. A
squid server that is placed in between acts as a
proxy server thereby reducing the time taken to
fetch the data and networking overhead. The
squid server to be used for a client are depends
on which region the client is running. The number
of squid servers will scale up or down based on
the network out bandwidth given by the squid.

1. Introduction

Amazon Elastic Compute Cloud (AmazonEC2)
is a web service that provides resizable
compute capacity in the cloud. It is designed
to make web-scale cloud computing easier for
developers. Amazon EC2’s simple web service
interface allows you to obtain and configure
capacity with minimal friction. It provides you
with complete control of your computing
resources and lets you run on Amazon’s

proven computing environment. Amazon EC2
reduces the time required to obtain and boot
new server instances to minutes, allowing you
to quickly scale capacity, both up and down,
as your computing requirements change.
Amazon EC2 changes the economics of
computing by allowing you to pay as you use.

The services that were used for the project
that are provided by amazon are

Elastic Load Balancer: Elastic Load Balancing
automatically distributes incoming application
traffic across multiple Amazon EC2 instances
in the cloud. It enables you to achieve greater
levels of fault tolerance in your applications,
seamlessly providing the required amount of
load balancing capacity needed to distribute
application traffic.

Auto-scaling groups: Auto Scaling helps you
maintain application availability and allows
you to scale your Amazon EC2 capacity up or
down automatically according to conditions
you define. You can use Auto Scaling to help
ensure that you are running your desired
number of Amazon EC2 instances. Auto
Scaling can also automatically increase the
number of Amazon EC2 instances during
demand spikes to maintain performance and
decrease capacity during lulls to reduce costs.

Route 53: Amazon Route 53 is a highly
available and scalable cloud Domain Name
System (DNS) web service. It is designed to
give developers and businesses an extremely
reliable and cost effective way to route end
users to Internet applications by
connecting user requests to infrastructure
running in AWS — such as Amazon EC2
instances, Elastic Load Balancing load

balancers, or Amazon S3 buckets — and can
also be used to route users to infrastructure
outside of AWS.

Cloud-Watch: Amazon Cloud-Watch is a
monitoring service for AWS cloud resources
and the applications you run on AWS. You can
use Amazon Cloud-Watch to collect and track
metrics, collect and monitor log files, and set
alarms. You can use Amazon Cloud-Watch to
gain system-wide visibility into resource
utilization, application performance, and
operational health.

Cloud-Formation: AWS Cloud-Formation gives
developers and systems administrators an
easy way to create and manage a collection of
related AWS resources, provisioning and
updating them in an orderly and predictable
fashion. We can deploy and update a
template and its associated collection of
resources (called a stack) in JSON or text
format. It is used to setup the entire
infrastructure and manage it in the same
console.

CERN Virtual Machine File System (CVMFS)

The CernVM File System (CernVM-FS)
provides a scalable, reliable and low
maintenance software distribution service. It
was developed to assist High Energy Physics
(HEP) collaborations to deploy software on
the worldwide-distributed computing
infrastructure used to run data processing
applications. CernVM-FS is implemented as a
POSIX read-only file system in user space (a
FUSE module). Files and directories are
hosted on standard web servers and mounted
in the universal namespace /cvmfs. Internally,
it uses content-addressable storage and
Merkle trees in order to maintain file data
and meta-data. CernVM-FS uses outgoing
HTTP connections only, thereby it avoids most
of the firewall issues of other network file
systems. It is actively used by small and large
HEP collaborations. This is installed in the
clients during boot time.

Frontier-Squid

The Frontier distributed database caching
system distributes data from data sources to
many clients around the world. The name
comes from "N Tier" where N is any number
and Tiers are layers of locations of
distribution. The protocol is http-based and
uses a RESTful architecture which is excellent
for caching and scales well. The Frontier
system uses the standard web caching tool
squid to cache the http objects at every site. It
is ideal for applications where there are large
numbers of widely distributed clients that
read basically the same data at close to the
same time, in much the same way that
popular websites are read by many clients.

The frontier-squid software package is a
patched version of the standard squid http
proxy cache software, pre-configured for use
by the Frontier distributed database caching
system.

2. Initial Requirements and Setup

->Scientific Linux 5/6 with root access

->Sufficient (~¥20GB+20%) cache space
reserved

—>autofs and fuse

The first step is to configure frontier squid in
an EC2 instance and create an image (AMI) so
that it can be used by the auto-scaling group.
Next, configure CVMFS client in an EC2
instance and save it as an AMI. The tutorial to
set up frontier squid and CVMFS can be found

CVMFS

https://twiki.grid.iu.edu/bin/view/Documentation/Release3/|
nstallCvmfs#4_3 Configuring_cvmfs

http://cernvm.cern.ch/portal/cvmfs/examples
Frontier-squid

https://twiki.grid.iu.edu/bin/view/Documentation/Release3/|
nstallFrontierSquid#3_About_Frontier_Squid

https://twiki.cern.ch/twiki/bin/view/Frontier/MyOwnSquid

https://twiki.grid.iu.edu/bin/view/Documentation/Release3/|
nstallBestPractices

3. Design and Architecture

The entire infrastructure setup of the project
is done by cloud formation with the AMI’s
that are created. All the services that were
explained work together in wunison to
complete the jobs given by the client/worker
nodes. The architecture of the setup is given
below.

Fig 1- CVMFS client/server Architecture on AWS

As shown in the figure the clients directly contact
the URL which points to the load balancer which
in turn points to the squid. The initial state of the
system has only a single squid server which does
most of the heavy lifting and it scales up when the
network out bandwidth of the squid is more than
a threshold that we set for a particular amount of
time, similarly when they are idle for some time
they are automatically scale down. This operation
is taken care by the Auto-scaling group. Cloud-
watch monitors all the metrics of the squid server
and triggers an alarm which starts up a new
instance which is a squid server. The setup will be
organized in such a way that each availability zone
has a similar stack and performs the same
functions.

4. Scripts to be used for
deployment

¢ The Cloud formation template
(autoscaling-squids.txt) can be found
in the ‘/project’ folder, which has to
be uploaded in the console to create
the stack.

* There is a script that has to be run on the
client that will find the availability zone in
which it is launched and it will assign its
HTTP Proxy to the URL of load balancer in
the respective zone. It can be found in the
folder project/scripts.

* The scripts that were used for testing the
squid are already present in the client
AMI. It can be found in ‘/cvmfsload’
(largequery and smallquery)

* The script to modify the http_proxy of
largequery and smallquery can be found
in ‘/project/scripts’

5. Implementation

The primary goal of this project is to find
the type of EC2 instance that can give the
best performance for its cost. This can be
figured out by load testing different types
of instances, obtain the results and
compare them. The testing is done using
instances m3.large and m3.xlarge. They
are tested using the scripts (largequery
and smallquery) which are used to obtain
the network bandwidth and number of
requests to the load balancer respectively.

The next step is to run the tests and
monitor the results in cloud-watch. The
results were recorded in the spreadsheet
and the network out bandwidth was
calculated in MBits/sec.

6. Results and Conclusions

The results of two instances are below

Network Out m3.large

800

123456 7 8 91011

Minutes

m3.large gave network out up to 700
MBits/sec for 1 — 8 clients.

Network Out
16 Clients - 3 Squids

__1200.00

© 1000.00

S~

£ 800.00

o

EGOO.OO

3400.00

{200.00

g 0.00

b= > >22=2222=222=2=2=222

<] [= W = W o WY o Y o WY o Y o Y T N TR T o TR o WY o WY o T

=z O O O 0O 0O 0O 00 0O 0 0O 0O o o o
2222222222222
O N < OO NS OO0 O N < O 0
nwmwmwmwmo oo OO ™ « o A
ST OO O GGG GG D

Time

Squid 1 Squid 2 Squid 3

m3.xlarge gave almost 1 GBit/sec for 16
clients and moreover it had 40 GB storage and
four cores which is way more than
m3.medium. Since it gave a Dbetter
performance m3.xlarge was the most
optimum instance that could be used as a
squid server according to the requirement of
56K cores. This also shows that as we scale up
the performance/throughput gets better.

CloudWatch Monitoring Details X
Time Range: LastHour v Period: 1Minute v O

Sum Requests (Count) Statistic: sum v

0 o

The test on load balancer using small query
also showed that the can accept more than
500,000 requests per minute and also proves
that load balancer cannot be the bottleneck.

The detailed results and graph can be found
in the spreadsheet ‘Load-tests-squid’ in the
‘/project’ folder.

7. References

https://aws.amazon.com/

8. Possible Troubleshooting Issues

IP tables should be turned
off/[removed in both client and
server after the setup if the client
is not able to reach the squid
server.

There should be enough space (at
least 20GB) and 25% more for the
cache in the client instance. It can
be modified in default.local.
Therefore create an instance with
atleast 30GB HDD.

Edit customize.sh in frontier squid,
not squid.conf

Reload every time you make any
changes to the squid

