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Abstract – The nature of data that is generated by scientific 
experiments and the computing power required by them are 
often unpredictable. In order to fulfill the needs of 
experimenters, Fermilab has initiated a project to build the 
Fermilab HEPCloud Facility.  This facility will enable 
experiments to perform the full spectrum of computing tasks, 
including data-intensive simulation and reconstruction, 
irrespective of whether the resources are local, remote, or both.  
It will also allow Fermilab to provision resources in a more 
cost-effective way, using the public cloud to provide elasticity 
that will allow the facility to respond to demand peaks without 
overprovisioning local resources.   This paper describes the 
significant amount of preparatory work that has been done to 
plan and prepare the code and data movement mechanisms for 
the HEPCloud Facility.  We have deployed a scalable caching 
service to deliver code and database information to jobs 
running on the public cloud.  This uses the frontier-squid 
server and CVMFS clients on EC2 instances and utilizes 
various services provided by AWS to build the infrastructure 
(stack) and perform load testing on the squid servers.  We have 
also done extensive performance benchmarking on AWS EC2 
compute instances, the Amazon S3 Simple Storage Service, and 
the network bandwidth between Amazon and the storage 
elements at Fermilab to which we stage back our data.  Based 
on the performance and cost of these services we have 
developed a code and data movement strategy for our 
experimental users. 

Scalable Infrastructure, Benchmarking, Code Distribution, 
Public Cloud Computing 

I.  INTRODUCTION  TO THE HEPCLOUD PROJECT 
The Fermilab HEPCloud Facility will enable high-energy 

physics experiments to perform the full spectrum of 
computing tasks, including data intensive computing and 
reconstruction, using the commercial cloud as an extension 
of the Fermilab facility.  The goal of the first year of the 
project is to make a facility that successfully demonstrates 
data-intensive computing for three key use cases.  The use 
case for the Compact Muon Solenoid experiment at CERN 
(CMS) is expected to generate 800TB of output over the 
course of a month of running 56000 compute cores on 
Amazon Web Services (AWS).  The use case of the NOvA 
experiment at Fermilab anticipates 2-3 TB both of input and 
output in an estimated 2 million hours of computing.   The 
third use case is a collaboration between the Dark Energy 
Survey telescopic survey and the LIGO gravitational wave 
experiment in which the amount of computing is modest but 
must be done on very fast turnaround.  In addition to the 
significant transfer of inbound and outbound data that is 
being processed in these high-throughput computing tasks, 
both applications also need to contact remote databases 
across the wide-area network.  All of them also have very 
large code bases that need to be transferred to the remote 
cloud.  

The goal of the preparatory work that has been done in 
this phase of the HEPCloud project is first of all to scale-test 
the auxiliary caching services that are used for code 
movement and database query caching, to be sure they can 
handle the expected load.  We also have carefully 
benchmarked the compute speed, the available network 



transfer bandwidth, and the throughput to the cloud-based 
storage system.  This work is necessary so we can accurately 
plan the budget for these projects and estimate their total 
duration.   

In the remainder of the paper we will describe the 
architecture of the scalable service, the methodology used to 
stress-test them, and the benchmark results.  We will then 
describe the benchmarking work that was done on the 
Amazon Web Service compute instances, network 
bandwidth and S3 storage service components. 

II. SCALABLE SERVICES DESCRIPTION 
Amazon Elastic Compute Cloud (AmazonEC2) is a web 

service that provides resizable computing capacity in the 
cloud. It is designed to make web-scale cloud computing 
easier for developers. Amazon EC2’s simple web service 
interface allows you to obtain and configure capacity with 
minimal friction. It provides you with complete control of 
your computing resources and lets you run on Amazon’s 
proven computing environment. Amazon EC2 reduces the 
time required to obtain and boot new server instances to 
minutes, allowing you to quickly scale capacity, both up and 
down, as your computing requirements change. Amazon 
EC2 changes the economics of computing by allowing you 
to pay as you use.  

 
All of the services below are provided by Amazon except 
the CVMFS service and the Frontier-Squid service. 

A. Elastic Load Balancer 
Elastic Load Balancing automatically distributes incoming 
application traffic across multiple Amazon EC2 instances 
in the cloud. It enables you to achieve greater levels of fault 
tolerance in your applications, seamlessly providing the 
required amount of load balancing capacity needed to 
distribute application traffic. 

B. Auto-scaling Groups 
Auto Scaling helps you maintain application availability and 
allows you to scale your Amazon EC2 capacity up or down 
automatically according to conditions you define. You can 
use Auto Scaling to help ensure that you are running your 
desired number of Amazon EC2 instances. Auto Scaling can 
also automatically increase the number of Amazon EC2 
instances during demand spikes to maintain performance 
and decrease capacity during lulls to reduce costs. 

C. Route 53 
Amazon Route 53 is a highly available and scalable cloud 
Domain Name System (DNS) web service. It is designed to 
give developers and businesses an extremely reliable and 
cost effective way to route end users to Internet applications 
by connecting user requests to infrastructure running in 
AWS – such as Amazon EC2 instances, Elastic Load 

Balancing load balancers, or Amazon S3 buckets – and can 
also be used to route users to infrastructure outside of AWS. 

D. CloudWatch 
Amazon CloudWatch is a monitoring service for AWS 
cloud resources and the applications you run on AWS. You 
can use Amazon CloudWatch to collect and track metrics, 
collect and monitor log files, and set alarms. You can use 
Amazon Cloud-Watch to gain system-wide visibility into 
resource utilization, application performance, and 
operational health.  
 

E. CloudFormation 
AWS Cloud-Formation gives developers and systems 
administrators an easy way to create and manage a 
collection of related AWS resources, provisioning and 
updating them in an orderly and predictable fashion. We can 
deploy and update a template and its associated collection of 
resources (called a stack) in JSON or text format. It is used 
to setup the entire infrastructure and manage it in the same 
console. 

F. CERN Virtual Machine File System (CVMFS) 
The CernVM File System (CernVM-FS) provides a 
scalable, reliable and low maintenance software distribution 
service. It was developed to assist High Energy Physics 
(HEP) collaborations to deploy software on the worldwide-
distributed computing infrastructure used to run data 
processing applications. CernVM-FS is implemented as a 
POSIX read-only file system in user space (a FUSE 
module). Files and directories are hosted on standard web 
servers and mounted in the universal namespace /cvmfs. 
Internally, it uses content-addressable storage and Merkle 
trees in order to maintain file data and meta-data. CernVM-
FS uses outgoing HTTP connections only, thereby it avoids 
most of the firewall issues of other network file systems. It 
is actively used by small and large HEP collaborations. This 
is installed in the clients during boot time. 
 

G. Frontier-Squid 
The Frontier distributed database caching system distributes 
data from data sources to many clients around the world. 
The name comes from "N Tier" where N is any number and 
Tiers are layers of locations of distribution. The protocol is 
http-based and uses a RESTful architecture which is 
excellent for caching and scales well. The Frontier system 
uses the standard web caching tool squid to cache the http 
objects at every site. It is ideal for applications where there 
are large numbers of widely distributed clients that read 
basically the  
 



Figure 1:  CVMFS Client/Server Architecture on AWS 
 
same data at close to the same time, in much the same way 
that popular websites are read by many clients. 
The frontier-squid software package is a patched version of 
the standard squid http proxy cache software, pre-
configured for use by the Frontier distributed database 
caching system. 

 

III. ARCHITECTURE OF SCALABLE STACK 
The entire infrastructure setup of the project is done by 
cloud formation with the AMI’s that are created. All the 
services that were explained work together in unison to 
complete the jobs given by the client/worker nodes. The 
architecture of the setup is given in Figure 1.  
 
As shown in the figure the clients directly contact the URL 
which points to the load balancer which in turn points to the 
squid. The initial state of the system has only a single squid 
server which does most of the heavy lifting and it scales up 
when the network out bandwidth of the squid is more than a 
threshold that we set for a particular amount of time, 
similarly when they are idle for some time they are 
automatically scale down. This operation is taken care by 
the Autoscaling group. CloudWatch monitors all the metrics 
of the squid server and triggers an alarm which starts up a 
new instance which is a squid server. The setup will be 
organized in such a way that each availability zone has a 
similar stack and performs the same functions.  

 

IV. IMPLEMENTATION AND MEASUREMENT 
 

A. Requirements and Installation Procedure 
 

We use a virtual machine with Scientific Linux 6 to 
install the frontier-squid server.   We allow 20GB for disk 
caching space.  Squid servers are limited by network 
bandwidth so for these tests we compared two Amazon 
instance types m3.xlarge which has 4 CPU cores and an 
average network bandwidth of 1Gbit/sec, and m3.large 
which has 2 CPU cores and average network bandwidth of 
700Mbit/sec.  We also create client machines by installing 
the CVMFS client RPM as documented in the references.   
For these tests the clients were of instance type m3.medium.  
On the client machine there is a script that runs at boot time 
and sets the address for the squid stack based on which 
availability zone you are in.  For example in us-west-2a 
availability zone the client would be automatically 
configured to be elb2.us-west-2a.elb.fnaldata.org, where 
fnaldata.org is an internal alias domain that is visible only to 
our virtual machines in Amazon Web Services.  In 
production we will launch one of these service stacks in each 
availability zone in which we run. 

  
We simulated the load through two different scripts.  One 

called largequery made repeated requests (2500 in parallel) 
for the same 10MB file, for a total of 2.5TB of total 
throughput per client. Smallquery fetched a very small file a 
very large number of times (312500) and was designed to 
test the total number of requests that the load balancer can 
serve.   
 

B. Results of load tests. 
 
Figure 2 shows the network throughput of the three 

frontier-squid servers that were activated in the course of the 
largequery test.  The three squid servers turn on one at a time 
as the high load continues.  The full throughput of the 
system, including the clients, load balancers, and servers, is 
limited only by the maximum network throughput that the 
clients and servers can generate.  The Elastic Load Balancer 
is found to not be a network traffic bottleneck.    This is 
important because all network traffic to and from the squid 
servers does go through the load balancer. 

 
Figure 3 shows the number of the requests per minute 

that were coming into the load balancer due to the 
smallquery script.  It shows that the load balancer can easily 
handle up to 500,000 requests per minute without having any 
dropped requests.  We observe that during periods of high 
load the elastic load balancer DNS entry starts to contain 
more IP addresses in the list of IP addresses that it returns. 

 
We have successfully demonstrated a sustained network 

bandwidth that is greater than the anticipated bandwidth that 
will be required for database caching and code caching in our 
largest use case.  We have demonstrated that the load 
balancing structure does not adversely affect network 
bandwidth, and that it results in no dropped requests.  

 



Figure 2:  Network throughput of Squid server 
 
 

 
 

Figure 3:  Load Balancer Requests per Minute 
 

V. BENCHMARKING DESCRIPTION 
 

A. Motivation for Benchmarking 
When purchasing your own hardware, you would use 
generic and portable benchmarks, as to define the 
performance of the hardware at running a wide variety of 
tasks.  When buying on-demand hardware from a third-party 
provider, specific benchmarks are required since the 
machines are bought only for the duration of a particular 
job, and should be the best at executing it. The study here 
presented regards the benchmarking of AWS instances and 
local cloud resources, with the purpose of using them for a 
full scale CMS (Compact Muon Solenoid) job. The 
benchmarks used were the ttbar_gensim, which constitute a 
reduced version of the first phase of the job, the hepspec06, 

a smaller collection of packages from the more notorious 
SPEC2006, and some custom made bandwidth benchmarks. 

B. GENSIM  Benchmarks 
The gensim benchmark is a reduced version of what the first 
phase of a CMS job will be. It acts by simulating the 
generation of 150 ttbar events and storing their data by 
using up to 100GB. 
Because of its nature, this benchmark is not only one of the 
most suited to assess the performances of the machine, but it 
also allow to monitor if the first phase of a CMS job will 
run smoothly without failing. 
The results are given as total ttbar/s and ttbar/s per core, and 
can also be used to estimate the running time of a CMS job. 
By running the benchmark multiple times on the same 
machines, it was determined that the results were very 
consistent, with maximum standard deviation obtained of 
2%.  

C. HEPSPEC06  Benchmarks 
The hepspec06 is a subset of the SPEC benchmarks 
collection defined by the all_cpp command. The reason for 
choosing this benchmark lays in the fact, that the 
components stressed by it are the same required for a CMS 
job, whose code is written in C++. 
Its purpose is to stress the CPU and compiler of the system, 
for both integer and floating point calculations and, with this 
being a generic benchmark, the obtained results will be 
more relatable, allowing for a comparison of performances 
with a much wider set of machines. 
The results are given by the HS06 value, which is obtained 
by calculating the geometric mean of the inverted ratios 
between the running time for each benchmark in the 
package and the respective associated constant. Before 
calculating the geometric mean, the ratios are actually 
averaged over 3 runs of the benchmarks, in order to obtain a 
statistic. 

D. Bandwidth tests 
 

The bandwidth tests have been carried out through the usage 
of custom made scripts that employ the same transfer 
protocols and storage systems that will be adopted during 
the execution of a CMS job. 
Amazon S3 storage is one of the possible solutions for 
storing intermediary files that needs to be written by the first 
phase of the job and read by the second phase. In order to 
test it, the high level ‘aws s3 cp’ command from the AWS 
CLI was used to simultaneously transfer 1, 10 and 100 1GB 
files, from up to 25 VMs at the same time.    By doing this 
test we hoped to determine whether we would see any 
outright failures of fetches from S3. 
In order to store the final results of the CMS job,  FermiGrid 
storages have been considered. The globus-url-copy and 
xrdcp commands were adopted respectively to transfer to 2 
different servers. Due to the high latency from Amazon to 
Fermilab, the file transfers had to be carried out by using 

 



multiple parallel streams, the best number of which was 
determined through a study of the parallelism parameter 
used by both commands. The globus-url-copy also allows to 
set the number of simultaneous TCP connection to use at the 
same time. With the aim of simulating the data transfer of a 
CMS job, 1, 5, 10 and 20 1GB files were transfer 
simultaneously to the storage, from up to 25 VMs at the 
same time. 

Figure 4: Download bandwidth throughput test from Amazon 
S3 to c3.2xlarge instances 

 

Figure 5: Study of the effect of the parallelism parameter 
over the total throughput 

 

Figure 6: Study of the effect of the concurrency parameter 
over the total throughput 

 

Figure 7: Total throughput analysis of the globus-url-copy 
command toward the fndca1 server 

 

Figure 8: Total throughput analysis of the xrdcp 
command toward the cmseos server 

 



Amazon N_C OR E C OR E 	
  TYP E S peed(GHz ) $	
  per	
  hour ttbar/s 	
  per	
  core ttbar/s 	
  total ttbar	
  per	
  $/hHS 06	
  per	
  coreHS 06	
  total HS 06	
  per	
  $/h
m3.xlarge 4 Xeon	
  E 5-­‐2670 2.50 0.266 0.0139 0.0557 0.209 14.3 57.1 215
m3.2xlage 8 Xeon	
  E 5-­‐2670 2.50 0.532 0.0139 0.111 0.208 12.2 97.6 184
m4.xlarge 4 Xeon	
  E 5-­‐2676 2.40 0.252 0.0201 0.0806 0.320 16.1 64.5 256
m4.2xlage 8 Xeon	
  E 5-­‐2676 2.40 0.504 0.0191 0.153 0.304 15.1 121 240
m4.4xlarge 16 Xeon	
  E 5-­‐2676 2.40 1.008 0.0198 0.317 0.315 13.5 217 215
c3.xlarge 4 Xeon	
  E 5-­‐2680 2.80 0.210 0.0153 0.0611 0.291 14.9 59.4 283
c3.2xlage 8 Xeon	
  E 5-­‐2680 2.80 0.420 0.0153 0.122 0.291 14.7 118 281
c3.4xlarge 16 Xeon	
  E 5-­‐2680 2.80 0.840 0.0149 0.239 0.284 13.2 212 252
c4.xlarge 4 Xeon	
  E 5-­‐2666 2.90 0.220 0.0228 0.091 0.415 17.5 69.9 318
c4.2xlage 8 Xeon	
  E 5-­‐2666 2.90 0.441 0.0226 0.181 0.410 16.5 132 300
c4.4xlarge 16 Xeon	
  E 5-­‐2666 2.90 0.882 0.0205 0.327 0.371 14.8 237 268
r3.xlarge 4 Xeon	
  E 5-­‐2670 2.50 0.350 0.0151 0.060 0.172 15.5 62 177
r3.2xlarge 8 Xeon	
  E 5-­‐2670 2.50 0.700 0.0150 0.120 0.171 14.2 114 162
r3.4xlarge 16 Xeon	
  E 5-­‐2670 2.50 1.400 0.0146 0.233 0.166 12.7 203 145
cc2.8xlarge 32 Xeon	
  E 5-­‐2670 2.60 1.090 0.0141 0.450 0.413 11.2 359 329

Table	
  1:	
  Final	
  results	
  from	
  the	
  gensim	
  and	
  hepspec06	
  benchmarks	
  on	
  AWS	
  instances	
  

Table	
  2:	
  Final	
  results	
  from	
  the	
  gensim	
  and	
  hepspec06	
  benchmarks	
  on	
  Fermilab	
  machines	
  

 

 

  
VI. RESULTS OF BENCHMARKING 

A. TTBar and GENSim 
The results for the GENSIM and HEPSPEC06 benchmarks 
are reported in Table 1 and Table 2.  The cost model 
adopted in this analysis is based on the on-demand pricing 
of AWS instances, which is indicative of the ‘0.25 of the 
on-demand’ algorithm that is being considered for the spot 
market. 
 
From the cost effectiveness alone, the best machines that 
have been observed would be those from the c4 and cc2 
series, but this would be without taking into account that the 
c4s are EBS only, which means that the price of the storage  

 

 
 
 

 
is not included in the one here presented. For this reason, the 
c3 instances have been considered, with particular regards 
for the c3.2xlarge, which comes with enough disk space, 
RAM and bandwidth to run a CMS job in a cost effective 
manner. 
In order to compare local machines with the AWS ones, the 
same benchmarks have been run over the FermiCloud, for 
both VM and bare metal, obtaining the results presented in 
Table 2, that, when compared with those in Table 1 show 
that the performances of local and public cloud machines 
analyzed are similar. 
 
 

 

 



B. Bandwidth Test to S3 
 
With this in mind, the study moved to the analysis of the 
bandwidth throughput from amazon c3.2xlarge instances to 
Amazon S3 and FermiGrid storage systems.  
 
The results of the bandwidth analysis for reading from S3 
are reported in Figure 4, from which it was concluded that 
no matter how much we would stress Amazon S3 within the 
capabilities of our AWS account, we would always get all 
the requested bandwidth, with the only limit being the 
maximum of 1Gbit/s per c3.2xlarge instance.  We observed 
no error failures. 
 

C. Parallelism and Concurrency Analysis 

 
Before moving to the analysis of the bandwidth to 

FermiGrid and CMSEOS, an analysis of the effect of the 
parallelism and concurrency parameters was carried out, in 
order to obtain the maximum efficacy for the minimum 
required number of inbound connections. 

   
From the analysis of the data reported in Figures 5 and 6, 

it was concluded that the best solution was to set parallelism 
at 4 and concurrency a 5. Any values higher than this, would 
cause some of the uploads request to time out during the 
bulkier phase of the benchmarks, for what it is thought to be 
a problem of the dCache on the receiving server not being 
able to distribute all the required inbound connections. 
 

D. Bandwidth Test to FermiGrid and CMSEOS 
 

Using the globus-url-copy command toward the fndca1 
server (the general disk server for FermiGrid) , and the 
xrdcp command toward the cmseos server (the dedicated 
disk storage server for CMS Tier 1), the upload bandwidth 
throughput from c3.2xlarge instances was analyzed. 
 
The results reported in Figures 7 and 8 show that we were 
able to reach a maximum bandwidth of 5.6Gbit/s with the 
globus-url-copy and 7Gbit/s with the xrdcp to cmseos.  Both 
of these are large storage services with multiple machines to 
receive the data on our end.  CMSEOS has more receivers 
than does fndca1 so we would expect that it has slightly 
better throughput. 
 

E. Summary of Results 
 
Through this process of CPU benchmarking, we have 
identified several types of Amazon instance types that will 
be suitable for our experimental use cases.  Although the 
final software suite for the large production is still being 
finalized, we expect that the relative performance numbers 
between various AWS instance types and bare metal 
machines at Fermilab will be true to the ratios we have 
measured, and the relative performance numbers will be key 
to determining the final mix of instance types that we run. 
 
We have also demonstrated a total network throughput from 
Amazon virtual machines to the Fermilab storage systems, 
2.5 times larger than the expected rate of data that will be 
generated by the jobs in the CMS use case. Given the actual 
network connectivity between Fermilab and Amazon via the 
ESNet research network (100Gbit/s to some regions) we 
expect that eventually we can do even better and believe 
that we may currently be limited by the number of 
simultaneous files our server can receive at once.  The 
combination of sufficient caching service, network 
throughput, storage bandwidth, and compute instances show 
that we are ready to analyze data in bulk on the cloud. 
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