
Code and Data Movement Design and Benchmarking for the Fermilab HEPCloud
Facility

Steven C. Timm, Gabriele Garzoglio, Anthony
Tiradani, Davide Grassano

Scientific Computing Division, Fermilab
Batavia, IL, USA

{timm,garzogli,tiradani}@fnal.gov

Rahul Krishnamurthy, Shivakumar Vinayagam, Ioan
Raicu

Computer Science Dept.,
Illinois Institute of Technology

Chicago, IL
Rahul013@gmail.com,s.vinayagam15@gmail.c

om,iraicu@iit.edu

Seo-Young Noh
National Institute of Superconducting and Networking
Korea Institute of Science and Technology Information

Daejeon, Korea
rsyoung@kisti.re.kr

Abstract – The nature of data that is generated by scientific
experiments and the computing power required by them are
often unpredictable. In order to fulfill the needs of
experimenters, Fermilab has initiated a project to build the
Fermilab HEPCloud Facility. This facility will enable
experiments to perform the full spectrum of computing tasks,
including data-intensive simulation and reconstruction,
irrespective of whether the resources are local, remote, or both.
It will also allow Fermilab to provision resources in a more
cost-effective way, using the public cloud to provide elasticity
that will allow the facility to respond to demand peaks without
overprovisioning local resources. This paper describes the
significant amount of preparatory work that has been done to
plan and prepare the code and data movement mechanisms for
the HEPCloud Facility. We have deployed a scalable caching
service to deliver code and database information to jobs
running on the public cloud. This uses the frontier-squid
server and CVMFS clients on EC2 instances and utilizes
various services provided by AWS to build the infrastructure
(stack) and perform load testing on the squid servers. We have
also done extensive performance benchmarking on AWS EC2
compute instances, the Amazon S3 Simple Storage Service, and
the network bandwidth between Amazon and the storage
elements at Fermilab to which we stage back our data. Based
on the performance and cost of these services we have
developed a code and data movement strategy for our
experimental users.

Scalable Infrastructure, Benchmarking, Code Distribution,
Public Cloud Computing

I. INTRODUCTION TO THE HEPCLOUD PROJECT
The Fermilab HEPCloud Facility will enable high-energy

physics experiments to perform the full spectrum of
computing tasks, including data intensive computing and
reconstruction, using the commercial cloud as an extension
of the Fermilab facility. The goal of the first year of the
project is to make a facility that successfully demonstrates
data-intensive computing for three key use cases. The use
case for the Compact Muon Solenoid experiment at CERN
(CMS) is expected to generate 800TB of output over the
course of a month of running 56000 compute cores on
Amazon Web Services (AWS). The use case of the NOvA
experiment at Fermilab anticipates 2-3 TB both of input and
output in an estimated 2 million hours of computing. The
third use case is a collaboration between the Dark Energy
Survey telescopic survey and the LIGO gravitational wave
experiment in which the amount of computing is modest but
must be done on very fast turnaround. In addition to the
significant transfer of inbound and outbound data that is
being processed in these high-throughput computing tasks,
both applications also need to contact remote databases
across the wide-area network. All of them also have very
large code bases that need to be transferred to the remote
cloud.

The goal of the preparatory work that has been done in
this phase of the HEPCloud project is first of all to scale-test
the auxiliary caching services that are used for code
movement and database query caching, to be sure they can
handle the expected load. We also have carefully
benchmarked the compute speed, the available network

transfer bandwidth, and the throughput to the cloud-based
storage system. This work is necessary so we can accurately
plan the budget for these projects and estimate their total
duration.

In the remainder of the paper we will describe the
architecture of the scalable service, the methodology used to
stress-test them, and the benchmark results. We will then
describe the benchmarking work that was done on the
Amazon Web Service compute instances, network
bandwidth and S3 storage service components.

II. SCALABLE SERVICES DESCRIPTION
Amazon Elastic Compute Cloud (AmazonEC2) is a web

service that provides resizable computing capacity in the
cloud. It is designed to make web-scale cloud computing
easier for developers. Amazon EC2’s simple web service
interface allows you to obtain and configure capacity with
minimal friction. It provides you with complete control of
your computing resources and lets you run on Amazon’s
proven computing environment. Amazon EC2 reduces the
time required to obtain and boot new server instances to
minutes, allowing you to quickly scale capacity, both up and
down, as your computing requirements change. Amazon
EC2 changes the economics of computing by allowing you
to pay as you use.

All of the services below are provided by Amazon except
the CVMFS service and the Frontier-Squid service.

A. Elastic Load Balancer
Elastic Load Balancing automatically distributes incoming
application traffic across multiple Amazon EC2 instances
in the cloud. It enables you to achieve greater levels of fault
tolerance in your applications, seamlessly providing the
required amount of load balancing capacity needed to
distribute application traffic.

B. Auto-scaling Groups
Auto Scaling helps you maintain application availability and
allows you to scale your Amazon EC2 capacity up or down
automatically according to conditions you define. You can
use Auto Scaling to help ensure that you are running your
desired number of Amazon EC2 instances. Auto Scaling can
also automatically increase the number of Amazon EC2
instances during demand spikes to maintain performance
and decrease capacity during lulls to reduce costs.

C. Route 53
Amazon Route 53 is a highly available and scalable cloud
Domain Name System (DNS) web service. It is designed to
give developers and businesses an extremely reliable and
cost effective way to route end users to Internet applications
by connecting user requests to infrastructure running in
AWS – such as Amazon EC2 instances, Elastic Load

Balancing load balancers, or Amazon S3 buckets – and can
also be used to route users to infrastructure outside of AWS.

D. CloudWatch
Amazon CloudWatch is a monitoring service for AWS
cloud resources and the applications you run on AWS. You
can use Amazon CloudWatch to collect and track metrics,
collect and monitor log files, and set alarms. You can use
Amazon Cloud-Watch to gain system-wide visibility into
resource utilization, application performance, and
operational health.

E. CloudFormation
AWS Cloud-Formation gives developers and systems
administrators an easy way to create and manage a
collection of related AWS resources, provisioning and
updating them in an orderly and predictable fashion. We can
deploy and update a template and its associated collection of
resources (called a stack) in JSON or text format. It is used
to setup the entire infrastructure and manage it in the same
console.

F. CERN Virtual Machine File System (CVMFS)
The CernVM File System (CernVM-FS) provides a
scalable, reliable and low maintenance software distribution
service. It was developed to assist High Energy Physics
(HEP) collaborations to deploy software on the worldwide-
distributed computing infrastructure used to run data
processing applications. CernVM-FS is implemented as a
POSIX read-only file system in user space (a FUSE
module). Files and directories are hosted on standard web
servers and mounted in the universal namespace /cvmfs.
Internally, it uses content-addressable storage and Merkle
trees in order to maintain file data and meta-data. CernVM-
FS uses outgoing HTTP connections only, thereby it avoids
most of the firewall issues of other network file systems. It
is actively used by small and large HEP collaborations. This
is installed in the clients during boot time.

G. Frontier-Squid
The Frontier distributed database caching system distributes
data from data sources to many clients around the world.
The name comes from "N Tier" where N is any number and
Tiers are layers of locations of distribution. The protocol is
http-based and uses a RESTful architecture which is
excellent for caching and scales well. The Frontier system
uses the standard web caching tool squid to cache the http
objects at every site. It is ideal for applications where there
are large numbers of widely distributed clients that read
basically the

Figure 1: CVMFS Client/Server Architecture on AWS

same data at close to the same time, in much the same way
that popular websites are read by many clients.
The frontier-squid software package is a patched version of
the standard squid http proxy cache software, pre-
configured for use by the Frontier distributed database
caching system.

III. ARCHITECTURE OF SCALABLE STACK
The entire infrastructure setup of the project is done by
cloud formation with the AMI’s that are created. All the
services that were explained work together in unison to
complete the jobs given by the client/worker nodes. The
architecture of the setup is given in Figure 1.

As shown in the figure the clients directly contact the URL
which points to the load balancer which in turn points to the
squid. The initial state of the system has only a single squid
server which does most of the heavy lifting and it scales up
when the network out bandwidth of the squid is more than a
threshold that we set for a particular amount of time,
similarly when they are idle for some time they are
automatically scale down. This operation is taken care by
the Autoscaling group. CloudWatch monitors all the metrics
of the squid server and triggers an alarm which starts up a
new instance which is a squid server. The setup will be
organized in such a way that each availability zone has a
similar stack and performs the same functions.

IV. IMPLEMENTATION AND MEASUREMENT

A. Requirements and Installation Procedure

We use a virtual machine with Scientific Linux 6 to
install the frontier-squid server. We allow 20GB for disk
caching space. Squid servers are limited by network
bandwidth so for these tests we compared two Amazon
instance types m3.xlarge which has 4 CPU cores and an
average network bandwidth of 1Gbit/sec, and m3.large
which has 2 CPU cores and average network bandwidth of
700Mbit/sec. We also create client machines by installing
the CVMFS client RPM as documented in the references.
For these tests the clients were of instance type m3.medium.
On the client machine there is a script that runs at boot time
and sets the address for the squid stack based on which
availability zone you are in. For example in us-west-2a
availability zone the client would be automatically
configured to be elb2.us-west-2a.elb.fnaldata.org, where
fnaldata.org is an internal alias domain that is visible only to
our virtual machines in Amazon Web Services. In
production we will launch one of these service stacks in each
availability zone in which we run.

We simulated the load through two different scripts. One

called largequery made repeated requests (2500 in parallel)
for the same 10MB file, for a total of 2.5TB of total
throughput per client. Smallquery fetched a very small file a
very large number of times (312500) and was designed to
test the total number of requests that the load balancer can
serve.

B. Results of load tests.

Figure 2 shows the network throughput of the three

frontier-squid servers that were activated in the course of the
largequery test. The three squid servers turn on one at a time
as the high load continues. The full throughput of the
system, including the clients, load balancers, and servers, is
limited only by the maximum network throughput that the
clients and servers can generate. The Elastic Load Balancer
is found to not be a network traffic bottleneck. This is
important because all network traffic to and from the squid
servers does go through the load balancer.

Figure 3 shows the number of the requests per minute

that were coming into the load balancer due to the
smallquery script. It shows that the load balancer can easily
handle up to 500,000 requests per minute without having any
dropped requests. We observe that during periods of high
load the elastic load balancer DNS entry starts to contain
more IP addresses in the list of IP addresses that it returns.

We have successfully demonstrated a sustained network

bandwidth that is greater than the anticipated bandwidth that
will be required for database caching and code caching in our
largest use case. We have demonstrated that the load
balancing structure does not adversely affect network
bandwidth, and that it results in no dropped requests.

Figure 2: Network throughput of Squid server

Figure 3: Load Balancer Requests per Minute

V. BENCHMARKING DESCRIPTION

A. Motivation for Benchmarking
When purchasing your own hardware, you would use
generic and portable benchmarks, as to define the
performance of the hardware at running a wide variety of
tasks. When buying on-demand hardware from a third-party
provider, specific benchmarks are required since the
machines are bought only for the duration of a particular
job, and should be the best at executing it. The study here
presented regards the benchmarking of AWS instances and
local cloud resources, with the purpose of using them for a
full scale CMS (Compact Muon Solenoid) job. The
benchmarks used were the ttbar_gensim, which constitute a
reduced version of the first phase of the job, the hepspec06,

a smaller collection of packages from the more notorious
SPEC2006, and some custom made bandwidth benchmarks.

B. GENSIM Benchmarks
The gensim benchmark is a reduced version of what the first
phase of a CMS job will be. It acts by simulating the
generation of 150 ttbar events and storing their data by
using up to 100GB.
Because of its nature, this benchmark is not only one of the
most suited to assess the performances of the machine, but it
also allow to monitor if the first phase of a CMS job will
run smoothly without failing.
The results are given as total ttbar/s and ttbar/s per core, and
can also be used to estimate the running time of a CMS job.
By running the benchmark multiple times on the same
machines, it was determined that the results were very
consistent, with maximum standard deviation obtained of
2%.

C. HEPSPEC06 Benchmarks
The hepspec06 is a subset of the SPEC benchmarks
collection defined by the all_cpp command. The reason for
choosing this benchmark lays in the fact, that the
components stressed by it are the same required for a CMS
job, whose code is written in C++.
Its purpose is to stress the CPU and compiler of the system,
for both integer and floating point calculations and, with this
being a generic benchmark, the obtained results will be
more relatable, allowing for a comparison of performances
with a much wider set of machines.
The results are given by the HS06 value, which is obtained
by calculating the geometric mean of the inverted ratios
between the running time for each benchmark in the
package and the respective associated constant. Before
calculating the geometric mean, the ratios are actually
averaged over 3 runs of the benchmarks, in order to obtain a
statistic.

D. Bandwidth tests

The bandwidth tests have been carried out through the usage
of custom made scripts that employ the same transfer
protocols and storage systems that will be adopted during
the execution of a CMS job.
Amazon S3 storage is one of the possible solutions for
storing intermediary files that needs to be written by the first
phase of the job and read by the second phase. In order to
test it, the high level ‘aws s3 cp’ command from the AWS
CLI was used to simultaneously transfer 1, 10 and 100 1GB
files, from up to 25 VMs at the same time. By doing this
test we hoped to determine whether we would see any
outright failures of fetches from S3.
In order to store the final results of the CMS job, FermiGrid
storages have been considered. The globus-url-copy and
xrdcp commands were adopted respectively to transfer to 2
different servers. Due to the high latency from Amazon to
Fermilab, the file transfers had to be carried out by using

multiple parallel streams, the best number of which was
determined through a study of the parallelism parameter
used by both commands. The globus-url-copy also allows to
set the number of simultaneous TCP connection to use at the
same time. With the aim of simulating the data transfer of a
CMS job, 1, 5, 10 and 20 1GB files were transfer
simultaneously to the storage, from up to 25 VMs at the
same time.

Figure 4: Download bandwidth throughput test from Amazon
S3 to c3.2xlarge instances

Figure 5: Study of the effect of the parallelism parameter
over the total throughput

Figure 6: Study of the effect of the concurrency parameter
over the total throughput

Figure 7: Total throughput analysis of the globus-url-copy
command toward the fndca1 server

Figure 8: Total throughput analysis of the xrdcp
command toward the cmseos server

Amazon N_C OR E C OR E 	
 TYP E S peed(GHz) $	
 per	
 hour ttbar/s 	
 per	
 core ttbar/s 	
 total ttbar	
 per	
 $/hHS 06	
 per	
 coreHS 06	
 total HS 06	
 per	
 $/h
m3.xlarge 4 Xeon	
 E 5-­‐2670 2.50 0.266 0.0139 0.0557 0.209 14.3 57.1 215
m3.2xlage 8 Xeon	
 E 5-­‐2670 2.50 0.532 0.0139 0.111 0.208 12.2 97.6 184
m4.xlarge 4 Xeon	
 E 5-­‐2676 2.40 0.252 0.0201 0.0806 0.320 16.1 64.5 256
m4.2xlage 8 Xeon	
 E 5-­‐2676 2.40 0.504 0.0191 0.153 0.304 15.1 121 240
m4.4xlarge 16 Xeon	
 E 5-­‐2676 2.40 1.008 0.0198 0.317 0.315 13.5 217 215
c3.xlarge 4 Xeon	
 E 5-­‐2680 2.80 0.210 0.0153 0.0611 0.291 14.9 59.4 283
c3.2xlage 8 Xeon	
 E 5-­‐2680 2.80 0.420 0.0153 0.122 0.291 14.7 118 281
c3.4xlarge 16 Xeon	
 E 5-­‐2680 2.80 0.840 0.0149 0.239 0.284 13.2 212 252
c4.xlarge 4 Xeon	
 E 5-­‐2666 2.90 0.220 0.0228 0.091 0.415 17.5 69.9 318
c4.2xlage 8 Xeon	
 E 5-­‐2666 2.90 0.441 0.0226 0.181 0.410 16.5 132 300
c4.4xlarge 16 Xeon	
 E 5-­‐2666 2.90 0.882 0.0205 0.327 0.371 14.8 237 268
r3.xlarge 4 Xeon	
 E 5-­‐2670 2.50 0.350 0.0151 0.060 0.172 15.5 62 177
r3.2xlarge 8 Xeon	
 E 5-­‐2670 2.50 0.700 0.0150 0.120 0.171 14.2 114 162
r3.4xlarge 16 Xeon	
 E 5-­‐2670 2.50 1.400 0.0146 0.233 0.166 12.7 203 145
cc2.8xlarge 32 Xeon	
 E 5-­‐2670 2.60 1.090 0.0141 0.450 0.413 11.2 359 329

Table	
 1:	
 Final	
 results	
 from	
 the	
 gensim	
 and	
 hepspec06	
 benchmarks	
 on	
 AWS	
 instances	

Table	
 2:	
 Final	
 results	
 from	
 the	
 gensim	
 and	
 hepspec06	
 benchmarks	
 on	
 Fermilab	
 machines	

VI. RESULTS OF BENCHMARKING

A. TTBar and GENSim
The results for the GENSIM and HEPSPEC06 benchmarks
are reported in Table 1 and Table 2. The cost model
adopted in this analysis is based on the on-demand pricing
of AWS instances, which is indicative of the ‘0.25 of the
on-demand’ algorithm that is being considered for the spot
market.

From the cost effectiveness alone, the best machines that
have been observed would be those from the c4 and cc2
series, but this would be without taking into account that the
c4s are EBS only, which means that the price of the storage

is not included in the one here presented. For this reason, the
c3 instances have been considered, with particular regards
for the c3.2xlarge, which comes with enough disk space,
RAM and bandwidth to run a CMS job in a cost effective
manner.
In order to compare local machines with the AWS ones, the
same benchmarks have been run over the FermiCloud, for
both VM and bare metal, obtaining the results presented in
Table 2, that, when compared with those in Table 1 show
that the performances of local and public cloud machines
analyzed are similar.

B. Bandwidth Test to S3

With this in mind, the study moved to the analysis of the
bandwidth throughput from amazon c3.2xlarge instances to
Amazon S3 and FermiGrid storage systems.

The results of the bandwidth analysis for reading from S3
are reported in Figure 4, from which it was concluded that
no matter how much we would stress Amazon S3 within the
capabilities of our AWS account, we would always get all
the requested bandwidth, with the only limit being the
maximum of 1Gbit/s per c3.2xlarge instance. We observed
no error failures.

C. Parallelism and Concurrency Analysis

Before moving to the analysis of the bandwidth to

FermiGrid and CMSEOS, an analysis of the effect of the
parallelism and concurrency parameters was carried out, in
order to obtain the maximum efficacy for the minimum
required number of inbound connections.

From the analysis of the data reported in Figures 5 and 6,

it was concluded that the best solution was to set parallelism
at 4 and concurrency a 5. Any values higher than this, would
cause some of the uploads request to time out during the
bulkier phase of the benchmarks, for what it is thought to be
a problem of the dCache on the receiving server not being
able to distribute all the required inbound connections.

D. Bandwidth Test to FermiGrid and CMSEOS

Using the globus-url-copy command toward the fndca1
server (the general disk server for FermiGrid) , and the
xrdcp command toward the cmseos server (the dedicated
disk storage server for CMS Tier 1), the upload bandwidth
throughput from c3.2xlarge instances was analyzed.

The results reported in Figures 7 and 8 show that we were
able to reach a maximum bandwidth of 5.6Gbit/s with the
globus-url-copy and 7Gbit/s with the xrdcp to cmseos. Both
of these are large storage services with multiple machines to
receive the data on our end. CMSEOS has more receivers
than does fndca1 so we would expect that it has slightly
better throughput.

E. Summary of Results

Through this process of CPU benchmarking, we have
identified several types of Amazon instance types that will
be suitable for our experimental use cases. Although the
final software suite for the large production is still being
finalized, we expect that the relative performance numbers
between various AWS instance types and bare metal
machines at Fermilab will be true to the ratios we have
measured, and the relative performance numbers will be key
to determining the final mix of instance types that we run.

We have also demonstrated a total network throughput from
Amazon virtual machines to the Fermilab storage systems,
2.5 times larger than the expected rate of data that will be
generated by the jobs in the CMS use case. Given the actual
network connectivity between Fermilab and Amazon via the
ESNet research network (100Gbit/s to some regions) we
expect that eventually we can do even better and believe
that we may currently be limited by the number of
simultaneous files our server can receive at once. The
combination of sufficient caching service, network
throughput, storage bandwidth, and compute instances show
that we are ready to analyze data in bulk on the cloud.

ACKNOWLEDGMENT
This research is supported by the US Department of

Energy under contract number DE-AC02-07CH11359.
This work is supported by KISTI under a joint

Cooperative Research and Development Agreement
CRADA-FRA 2015-001 / KISTI-C15005.

We acknowledge the support of the Amazon Web
Services team.

REFERENCES

[1] S. Timm, G. Garzoglio, S. Fuess, and G. Cooper. Virtual facility at

fermilab: Infrastructure and services expand to public clouds. In The
International Symposium on Grids and Clouds (ISGC), volume 2015,
2015.

[2] Squid - HTTP proxy server http://www.squid-cache.org, 2015
[3] J. Blomer et al, Status and future perspectives of CernVM-FS J.

Phys.: Conf. Ser. 396052013, doi:10.1088/1742-6596/396/5/052013
[4] H. Wu, S. Ren, S. Timm, G. Garzoglio, S. Noh, “Experimental Study

of Bidding Strategies For Scientific Workflows using Spot
Instances.” Submitted to MTAGS workshop Nov. 2015.

[5] S. Timm et al, Cloud Services for the Fermilab Scientific
Stakeholders. CHEP workshop 2015 to be published in IOP
Conference Proceedings.

