2= Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Framework design experience from art

Marc Paterno
EIC software workshop
25 September 2015

What is a framework?

From Wikipedia:.

“... a software framework is an abstraction in which software

providing generic functionality can be selectively changed by

additional user-written code, thus providing application-specific

software”

The “generic functionality” provided by artis a command-line-

driven event-processing framework application.

— command-line-driven: the application is not interactive

— event-processing: the program processes a sequence of
events, as specified by the user

« User-written code, in this case, is provided by the
collaborators on experiments using art.

Importantly, the framework is part of a larger “ecosystem”.

2= Fermilab

2 M. Paterno | Framework experience with art 9/25/15

What are the parts of the “ecosystem”

« Source code under version control (we use git)

* Abuild system: art provides one, but does not require its use

* Release, dependency, and environment control
— strict control over library versions: binary compatibility is guaranteed
— artrelies upon a system called UPS, mostly behind the scenes

— environment variables used to control PATH, dynamic loading of
libraries

« Umbrella packages to guarantee binary compatibility
 art. the framework itself
« Supporting products (configuration, message logging, etc.)

» Multiple package distribution options:
— a web-based package distribution system (scisoft.fnal.gov)
— Use of CVMFS, especially for grid use
« Available connection to data handling (decoupling is important)

« Curated tools that work together: ROOT, Geant4, python, numpy,
Boost, etc. Binary compatibility guaranteed if you use our builds.

2= Fermilab

3 M. Paterno | Framework experience with art 9/25/15

What a framework gives you

Allows you to write your physics code without worrying about the infrastructure.
Makes it easy to work with others.
But not for free — you have to learn it!

Some people find such a system constraining:
Infrastructure is hidden behind the scenes from you
Your ideas may not be included
You have to trust a system you didn’t write
You miss out on the fun of writing super-cool complicated C++ code

You can concentrate on physics code

Your C++ is pretty easy (you are using a complicated system, not writing it)
You get to miss out having to maintain the complicated C++ code (yay)
You can use code from others and share yours with others

You can get services for free (e.g. data handling)

In g2migtrace /src/primaryConstruction.cc

// constructionMaterials is essentially a "materials library" class.

// Passing to to construction functions allows, ~--~-- b 211 mmtoes g
What if we have a

/***%% BEGIN CONSTRUCTION PROCESS **¥**/ different test beam?

// Construct the world volume
1abPTR = 1lab -> ConstructLab();
// Construct the "holders" of the actual physical objects

#ifdef TESTBEAM :
ArcH. push_back(LabPTR) ; What if want a
#else different detector
ArcH = arc->ConstructArcs(1abPTR);

#endif configuration?

// Build the calorimeters
// cal -> ConstructCalorimeters(ArcH); his kind of dei
station->ConstructStations(ArcH); this Kind ot code Is

#ifndef TESTBEAM hard to excise later
// Build the physical vacuum chambers and tne vacuum itseLrt

VacH = vC -> ConstructVacChamber(ArcH);

| don’t think we can’t simultaneously maintain this code and our sanity

What are some of the event-processing tasks?

Simulation of detector response to events
Reconstruction of real or simulated events

Calibration studies

Analysis: making plots (or at least histograms and such)!

> W~

« All of these tasks can be performed in the same framework.

« All the modules you may write can be re-used in any relevant
event-processing context.

2= Fermilab

6 M. Paterno | Framework experience with art 9/25/15

The genesis of art

artis a fork of the CMSSW framework, the framework used by the
CMS experiment at the LHC.

— Many in the initial art team were also designers of CMSSW

— The fork was done in 2009; then only considered by Mu2e

— Simplified and made suitable for multiple experiments in 2010
We replaced

— the build system

— the packaging system that allowed easy use of external products

— plugin management, to simplify user-defined data product generation
— the configuration language (replaced Python with JSON-ish FHICL)

We added the ability to ship a release to be used by experiments
as an “external product”

2= Fermilab

M. Paterno | Framework experience with art 9/25/15

What does the framework program do for you?

* Mostly the framework exists to handle the tasks in event
processing that you don’t care much about, but which have to
work

— reading input, writing output
— loading and configuring the plugin modules you want to run

— keeping track of how outputs were generated (“provenance
tracking”); critical for reproducibility

— organizing histogram output

— Services to manage access to “global resources”. geometry
information, calibrations, ...

— systematizing the handling of error conditions (exception
classes and a pattern for their use)

— timing modules, measuring memory use, tracking execution, ...
« The framework does not know about physics

2= Fermilab

8 M. Paterno | Framework experience with art 9/25/15

A high-level view of a configured art program

endpath

plots 1
path A S

- histogram
file
)
Ig 1 Ig 2 lg 3
—
source
)
path B

output 1 »(artfile 1

~————
)
output 2 »(artfile2
art input
file —

pad

2= Fermilab

9 M. Paterno | Framework experience with art 9/25/15

Choosing algorithms to run

 Algorithms (simulation, reconstruction, or just analysis code)
IS built into classes, put into dynamic libraries called modules.

« Text files (in a language called FHICL) declare

— what modules will be loaded, and in what order they are to run
— what files will be read and written

endpath

)

plots 1
path A S

— |
file

)

g 1 Ig 2 |
——
source
)
path B

output 1 »(artfile 1

——
alg 4 alg 5
)
output 2 »(artfile 2
art input
file —_

2= Fermilab

10 M. Paterno | Framework experience with art 9/25/15

pad

Accessing data

Modules never
communicate with
(call) other modules.

Modules can call
services (e.g., to
create histograms
managed by ROOT).

Mostly, modules
Interact with an Event.

An Eventis just an
organized collection of
data products, with
information about them
(metadata).

M. Paterno | Framework experience with art

Event

product 1

product 2

|_—| product 3

1Y

Al product 5

2= Fermilab

9/25/15

Data: events, subruns, runs, data products

12

An Eventis the “atomic unit” for data processing, and is like a in-
memory database of user-defined data products

— modules are passed a whole event, pick out the parts they want
— producers and filters can put new data products into an event

— art provides facilities for creating data product classes, but doesn’t
actually contain any such classes. Your experiments define them.

A SubRun is:

— a sequence of events, collected or simulated under some consistent
running conditions

— an event-like container for subrun products
A Runis like a subrun, only bigger.

The rules for defining subruns and runs belong to your experiment,
and are not part of art.

Events labeled with an EventID, which contains a triplet of run
number, subrun number, and event number.

2= Fermilab

M. Paterno | Framework experience with art 9/25/15

Phases of processing: callbacks and the module API

 Modules are classes, so have constructors and destructors.
— do as much initialization as possible in the constructor
* Modules have member functions to handle the event loop

— begin/end job: initialization not possible in the constructor can
be done here; should be undone at end job. Called before files
are open.

— begin/end run: called when a new run is encountered in a file
(some subtleties ignored for now)

— begin/end subrun: similar to above, but for subruns
— event: this is the main processing function for most modules

« Some module types can read from and write to the event;

some can onIy read from the event.
B] [B
Job Job
3£ Fermilab

13 M. Paterno | Framework experience with art 9/25/15

Begln End Begin End
SubRun E"e”t [E"e”t] [SubRun] [SubRun] E"e“t SubRun

5 different module types

« Sources are the things that provide the sequence of runs /
subruns / events to be processed. art provides a few widely-
used sources and tools to write your own.

* Producers and filters create new data products; filters also
return a status that can terminate a path.

* Analyzers can’t create new products, but can write other
output (e.g. histogram files, ntuples).

« Qutput modules write output files.

« Exactly one source, and any number of the others types of
module, can be used in the same program.

» Multiple instances of the same type of module are allowed

2= Fermilab

14 M. Paterno | Framework experience with art 9/25/15

The difference between a module type and instance

« A module typeis also a C++ type, that is, a class.

* One can have multiple instances of the same data type, with
distinct identity and state:

std::string greeting { “hello” };
std::string farewell { “goodbye” };

« Similarly, a framework program can have multiple instances
of the same module type:

— Several instances of the same tracking algorithm, each with
different values of some configurable parameters.

— Several instances of RootOutput, each writing its own output
art-ROOT data file.

2= Fermilab

15 M. Paterno | Framework experience with art 9/25/15

Services

* Services provide access to program-wide information or
facilities.

« Service can be access (almost) anywhere, at (almost) any
time
— can be used in module constructors
 artprovides some services

— examples include timing of modules, controlled creation of
ROOT histograms

« EXxperiments also write services
— Some are provided by LArSoft to many experiments
— Some are completely experiment-specific

— examples include access to geometry information, and
calibration information

2= Fermilab

16 M. Paterno | Framework experience with art 9/25/15

Maintenance and support tools & efforts

17

Meetings

— art stakeholders: weekly meeting with representatives of experiments

— triage meetings: weekly team meeting to schedule work
Mailing lists

— art-users@fnal.gov (open to all)

— artists@fnal.gov (sends mail to the core developers)

— each experiment will have one or more lists

Issues (feature requests, bug reports) handled at Redmine site

— anyone can report a suspected bug

— we ask for help in getting the report into the right tracker
« experiment code bugs in experiment’s bug tracker
« infrastructure bugs in art issue tracker

— we ask people to discuss feature requests within their experiment, or on

the art-users list, before submitting a feature request
Project management done using the Redmine site
— prioritize work based on experiment needs
— the tool isn’t great, but it is usable (and it is what we have)

M. Paterno | Framework experience with art

9/25/15

2= Fermilab

Integration into workflows

« The FHICL configuration language is designed to make it
easy to provide automated modifications without parsing

— e.g. appending a new line to change any configuration
parameter

* Runtime environment and delivery system is designed to
allow integration of workflow system tools

— e.g. data-set handling (SAM) introduced by a 3"-party UPS
product which depends on art and SAM; art does not depend

upon it.
« Delivery of software to grid sites made easy with CVMFS.
— UPS product trees can be made available anywhere

2= Fermilab

18 M. Paterno | Framework experience with art 9/25/15

Original design features (mostly) not now in art

» Path specification design provided consistency checking at
program start-up.

 Modules declared what data they read, as well as what they
created; enables verification of correctness, and computing of
an efficient processing graph.

» Multithreaded design
— does not improve throughput, but decreases memory use
— this has now been added to CMSSW, using a task-based model
— not yet in art; need is less.

« Use of an internal database (SQLite) to store metadata

— we have recently added this, but don’t use it to its full potential
yet

2= Fermilab

19 M. Paterno | Framework experience with art 9/25/15

What would | do differently today?

20

Plan for concurrency from day 1.

— We should not have allowed ourselves to be argued out of this.
Plan for use of HPC-style resources

— varied architectures

— many cores, each with limited memory; think of MIC

— rely on fast networking, avoid use of files as much as possible (we do
this with the artdaq DAQ toolkit): distributed programming

Plan for polyglot programming

— allow use of other languages where possible; e.g. we are soon to
deploy support for writing analysis modules in Python.

Enforce HPC-ready data format
— structure-of-arrays, rather than array-of-structures

— simple data, with sophistication added by “wrappers”, classes that
provide functions to go with the simple data of the data product

Keep I/0O technology choices open.
Make everything open-source from day 1.

2= Fermilab

M. Paterno | Framework experience with art 9/25/15

Things to think about very hard

« (Can you share effort with someone else?

— The neutrino and muon program experiments at FNAL have saved a
great deal of effort by not inventing multiple frameworks. CDF and DO
(Tevatron) did not do this; CMS and ATLAS (LHC) did not do this.

« How will you teach your users?
— Most will not be software experts.

— Many will not care about software quality: they have a job to do today,
and no time to worry about the future. Framework supporters have to
worry about the future!

— People who care little about quality can produces reams of code
quickly, and so most examples of use might be bad examples.

— Tutorial documentation, and task-based documentation, is very hard to
produce — and is of great value.

* How will you get feedback from your users?

2= Fermilab

21 M. Paterno | Framework experience with art 9/25/15

A few final observations concerning language

« What language should you use?

— | think you should choose C++, but you should choose it by
intention, not by accident. Know why you do not choose some
other.

« Keep up with the language standard.
— Experimenters are naturally resistant to change
— But languages evolve for good reason

— e.g. C++ move semantics, shared_ptr and unique_ptr, variadic
templates.

— e.g. using template metaprogramming to help avoid user errors,
and to make library use simpler (we couldn’t survive without
SFINAE)

2= Fermilab

22 M. Paterno | Framework experience with art 9/25/15

Summary

« Software design is mostly a “people thing”
— coding is not so hard
— deciding what you want the code to do is much harder

— you can err both by too much planning (“analysis paralysis”) and
by too little planning (this is very common in HEP).

« Design failures are usually analysis failures: not enough
thought given to all the necessary cases.

* Flexibility is key:
— you probably can’t “design one to throw away”

— you probably can start with the most important features, in a
design where extensibility is planned for.

2= Fermilab

23 M. Paterno | Framework experience with art 9/25/15

Extra slides

2= Fermilab

24 M. Paterno | Framework experience with art 9/25/15

What does a framework do?

Run/Subrun/
Event stores

. Code you use from the
framework

25

What are the parts of the art framework?

26

User code is what
experimenters provide.

Services provide
access to global
facilities.

Data model provides
the representation of
event data.

Event processor is the
“event loop”, the core of
the framework.

Configuration and
logger systems can be
used by everything.

M. Paterno | Framework experience with art

User Code

Module
Interface

Event Processor

‘ Config] ‘ Logger]
3F Fermilab

9/25/15

Data Model

What might a program look like without a framework?

Data products are read from // pseudocode! not real C++.

input file. // Part of the body of main
* New data products are read(infile, &prodl, &prod2);
created by algorithms. alg_1(prodl, &prod3);
- Plots are created and written ~ 919-4(prodz, &prod4);

out alg_3(prod3, &prodS5);
' _ plotsl(prod2, plotfile);
 Data products are written to plots2(prod3, prod4,

several output files. plotfile);

. We want to be able to W'"ite("“t;;lﬂ’ o
improve any algorithm prods, prod-J,
X y aig write(outfileZ,

without breaking others. We

) rodZ2, prod4);
want loose coupling. P g)

2= Fermilab

27 M. Paterno | Framework experience with art 9/25/15

Loose coupling vs. tight coupling

28

Algorithms that are interwoven are hard to modify
— changes in one part of the code often break code elsewhere

— programs that are hard to modify are hard to improve and hard to
extend with your own ideas

— interwoven = tight coupling

Loose coupling increases flexibility

— replace algorithms you don’t like with ones you do

— extend data structures without breaking old code

— don’t need to “rebuild the world” because of local modifications
Loose coupling can be applied at every level

— between classes

— between libraries

— between sets of libraries (packages)

— this has influenced the design of art at every level.

2= Fermilab

M. Paterno | Framework experience with art 9/25/15

Where does your code go?

« Of course, all code goes into a source code repository!

* You only need to have the source code you are modifying
— You are not modifying art itself
— You may be modifying experiment code, or LArSoft code

* Your experiment many have many packages.

« The organization of your experiment’s code determines how
much (or how little) code you need to have access to.

« To make builds fast, it is best to check out only what you have
to, and to use pre-built libraries as much as you can.

— art, ROOT, Geant4, boost, ... many large libraries are provided
pre-built for you.

— If you are using LArSoft (as opposed to modifying it), you can
use the pre-built libraries.

2= Fermilab

29 M. Paterno | Framework experience with art 9/25/15

Getting input

Sources are the things that tell the framework what runs,
subruns, and events are to be processed.

« Some sources read data files (e.g. RootInput, which reads
the art-ROOT data file format, as written by RootOutput).

« One source (EmptyEvent) creates events containing no
products; it is widely used in simulations.
Experiment often have specialized inputs:

— to read file formats (e.g. written by your DAQ system); these will
have specialized sources created to read them;

— to read from a live DAQ system

— to do specialized manipulations of data from the file, before it is
given to the framework

2= Fermilab

30 M. Paterno | Framework experience with art 9/25/15

Making plots (and other analysis tasks)

31

Not all algorithms have to do with
simulation or reconstruction tasks.

Not all algorithms create new data

products for other algorithms.

Some algorithms accumulate

statistics about event data

— calculate statistical summaries for
printing

— mostly, create and fill histograms (or
other types of plots)

The framework provides a module
variety called an analyzer for such
tasks.

M. Paterno | Framework experience with art

Event

product 1

product 2

product 3

product 5

9/25/15

2= Fermilab

