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1999–2006: Graduate work on CLEO, a medium-sized collaboration,
Ph.D. from Cornell.

2006–2011: Postgraduate work on CMS, a large collaboration, with
Texas A&M University.

I Commissioning, mostly muon detector alignment.

I Search for leptonic jets in early LHC data.

2011–now: Data scientist for Open Data Group, a small consulting
firm with clients in large companies.

I Analyzed data from hyperspectral satellite photos,
automobile traffic, network traffic, web trends,
Twitter sentiment, geolocation, Chicago crime, etc.

I Implemented data mining models with variations.

I Created the Portable Format for Analytics (PFA), a
data mining model interchange format in JSON.
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PFA has been my largest project: a successor to PMML (Predictive
Model Markup Language), PFA simplifies the representation of statistical
models and adds basic control constructs. Basically, a programming
language in JSON with a large library of data mining primitives.

Recently adopted by the Data Mining Group (DMG), the organization
that standardized and maintains PMML.

http://dmg.org
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I What is data science?

I Statistical techniques that aren’t often used in HEP

I Software tools: Hadoop, Spark, and all that

I Trends in analytic programming
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Embarrassingly, most answers to this question come from Twitter. . .

I “A data scientist is a statistician who lives in San Francisco.”

I “A data scientist is better at statistics than a software engineer and
better at programming than a statistician.”

I “A data scientist is a business analyst with a Mac.”

Data science is the application of statistical techniques to business
decisions with an emphasis on software development and large-scale
deployment (a.k.a. “big data”).

In other words, what high-energy physicists do, but applied to busi-
ness decisions.
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Because of the overlap, many data scientists come from physics, but
knowledge can flow the other way, too.
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Statistical techniques
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Descriptive: Model is the final product, revealing an underlying
relationship in the data: e.g. the Standard Model.

Predictive: Model is a means to performing predictions and is judged
on the quality of those predictions: e.g. stock predictions.

Supervised: Training procedure accentuates differences between two
labeled datasets: e.g. signal and background Monte Carlo.

Unsupervised: Training procedure finds patterns on its own: e.g. groups
of nearby particles are a jet.

Anomaly detection: Model describes the normal situation to identify
unusual cases or changes: e.g. data quality monitor.

Data compression: Model summarizes data for the sake of describing it
with fewer bits: e.g. image compression.
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beamspot, are stable for long
periods of time but might jump at
discrete times.

Want to identify jumps and combine
statistics in the stable periods.
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Some quantities, such as the LHC
beamspot, are stable for long
periods of time but might jump at
discrete times.

Want to identify jumps and combine
statistics in the stable periods.

I Generalized Likelihood Ratio (GLR) is a change detection technique
that finds the time when one distribution jumps to another using a
maximum likelihood scan.
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Some quantities, such as the LHC
beamspot, are stable for long
periods of time but might jump at
discrete times.

Want to identify jumps and combine
statistics in the stable periods.

I Regression trees can
use time as a regressor
to partition the
sequence into periods
of minimal variance
(or minimal linear-fit
χ2, etc.).
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Some quantities, such as the LHC
beamspot, are stable for long
periods of time but might jump at
discrete times.

Want to identify jumps and combine
statistics in the stable periods.

I Hierarchical clustering, especially single-linkage, groups chains of
gradually changing parameters and splits at the biggest jumps.
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Some quantities, such as the CMS
magnetic field, have been simulated
in high detail, but a simplified model
must be used in tracking because of
memory constraints.

One could again use a regression
tree, this time with r , φ, z as
regressors, rather than time, to split
the space by importance.

This is an example of using a model as compression (not even “data”).
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Physics is not the only field in which data quality must be
monitored by human operators.

Projects with large numbers of distributions to watch use
anomaly detection models as the first pass.

I CUSUM (cumulative sum) models catch slowly drifting trends, in
which the accumulation of recent past is more significant than any
one outlier.

I Holt-Winters is an extension
of Exponentially Weighted
Moving Average (EWMA)
that can absorb complex
behaviors, such as cycles,
into the “normal”
distribution.
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Non-linear regression is probably HEP’s favorite
model, but in some cases, one does not want to
assume an ansatz (e.g. background combinatorics).

Non-parametric fitting techniques:

I K-Nearest Neighbors (KNN): make a curve by
averaging the k nearest points from the training dataset.
Alternatively, average all points within a ball of specified radius.

I Locally Weighted Scatterplot Smoothing
(LOWESS): make a curve by linearly fitting
the training dataset {xi} at each xp with

weight wi = e−(xi−xp)
2/2/σ.

I Gaussian Process: make a curve by assuming nearby points to be
more correlated than distant points.
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Software tools
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For decades, HEP had the biggest datasets anywhere.

In the past 10–15 years, internet-related datasets have reached TB and
PB scales: advertisement click-throughs, shopping correlations, web
search engines, cybersecurity, Facebook pictures, YouTube videos, etc.

But analyses of these datasets are also tightly coupled. For example,

I A customer buys diapers online; what other products should you
recommend?

I Analysis of diaper purchases across all customers reveals a
correlation with milk; recommend milk.

The dataset, originally indexed by customer, must be re-indexed by
product (or even by sets of products) to make a recommendation.

By contrast, most HEP analyses can process events independently.
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Big Data (my definition): a dataset that is too large to be processed on
one computer; must resort to a distributed calculation.

Distributed calculations are qualitatively different from in-memory
calculations.

They get increasingly difficult as the problems get more tightly coupled,
since data must be shuffled among processors.
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Google had an re-indexing problem: a set of webpages containing words
had to be re-indexed as a set of words pointing to webpages, so that you
can search for pages by keyword.

Their solution, called
“map-reduce,” was published
as a white paper in 2004.

It was immediately
reimplemented as an open
source product, Apache Hadoop.

Hadoop is now almost synonymous with Big Data, and it has spawned an
ecosystem of tools that interoperate with it, much like ROOT in HEP.
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Hadoop executes two sets of independent, identical processors:

I Mappers, which transform each input to a 〈key, value〉 pair.

I Reducers, each operates on all values that have a given key.

def mapper(webpage ):

for word in webpage.split ():

yield (word, webpage)

def reducer(word, webpages ):

searchIndex[word] = {}

for webpage in webpages:

searchIndex[word].add(webpage)

The system groups data by key in an optimized way (independent partial
sorts followed by merge, minimizing network bandwidth).
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Most physics analyses apply the same function to all events independently.
However, alignment and calibration are more tightly coupled:

I Alignment residuals must be re-indexed from tracks to subdetectors.

I Calibration responses must be re-indexed from π0s to subdetectors.

def mapper(event ):

for track in event:

for hit in track:

key = hit.subdetector ()

residual = track.projection(hit) - hit.pos()

yield (key , residual)

def reducer(subdetector , residuals ):

numer = 0

denom = 0

for residual in residuals:

numer = numer + residual

denom = denom + 1

move(subdetector , numer/denom) # shift by residual mean

Map-reduce can be applied to one iteration of alignment or calibration.
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Hadoop was not designed for iterative map-reduce.

Apache Spark is a framework that runs within a
Hadoop cluster to speed up iteration.

It provides more control over the
workflow topology (not just map and
reduce) and allows the user to
cache some datasets in RAM
memory, so that they don’t have to
be re-loaded from disk.

Disk access is the biggest bottleneck for calculations of this type.



Jim Pivarski 36/60Alignment example in Spark
@case class Ratio(numer , denom ):

def add(self , other ):

return Ratio(self.numer + other.numer ,

self.denom + other.denom)

def value(self):

return self.numer / self.denom

def makePair(track, hit):

key = hit.subdetector ()

residual = track.projection(hit) - hit.pos()

return (key , Ratio(residual , 1))

tracks.cache() # tells Spark to keep tracks in memory

for iteration in range(100):

keyValuePairs =

tracks.flatMap(lambda track: track.hits.map(

lambda hit: makePair(track, hit)))

corrections =

keyValuePairs.reduceByKey(lambda r1, r2: r1.add(r2))

.mapValues(lambda r: r.value ())

corrections.foreach(move)
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Another common problem in industry: how to perform distributed
calculations in real-time?

I Example: update shopping correlations while customers are
shopping, so that recommendations are based on purchases made in
the last few minutes.

Hadoop and Spark are batch processors: they work on one big dataset.

Storm (and others, including “Spark-Streaming”) are streaming
processors: data flow through continuously.

Processors pass events through a
directed, acyclic graph.

Fail-fast: if a processor
encounters an error, it is

immediately killed and replaced.
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Streaming processors can die and drop events, or the wrong version of
code might be deployed online, so they are less trustworthy than the Nth

revision of a batch calculation.

However, batch calculations are not up-to-date. Want best of both. . .

Lambda architecture
Solution: run both. Batch-process everything up to the last hour,
stream-process starts fresh each hour, and queries combine results.
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Programming trends
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Everything mentioned so far was written in Java (or Scala or Clojure)
with hooks for Python and R. Little support for C/C++. Why is that?

C/C++ JVM (Java et al) Python and R

Hardest to debug.
Mixes analysis with
low-level concerns.

Human-readable
internals, stack
traces, runtime types.

Interactive prompt!
Everything can be
inspected at runtime.

Fastest, raw machine
access, static bytecode,
manual memory
management.

Medium speed,
dynamic optimizer.

Slowest, though
performance-critical
code is external.

Used by physicists
(and cybersecurity).

Used for large-scale
business analytics;
suited to networking.

Used by statisticians
and data scientists for
laptop-analyses.
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Static memory management fragments the heap, so the “new” (or
“malloc”) command has to search for an available block.

Managed memory fills like a stack, so there is no search, and the whole
stack is cleared when surviving objects are moved to longer-term storage.
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New/delete (malloc/free) memory management:

new delete random pauses

slow fast don’t happen

Garbage collectors:

new delete random pauses

fast n/a happen

I Good for most distributed applications because network data is
intermittent; pauses fill the cracks.

I Worked against a high-throughput application I wrote: input stream
was continuous, so garbage collector pauses caused data to overflow
the input queue. Would have been better slower and uniform!
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Another trend is the restriction to immutable data: variables that don’t
vary and data structures that can only be replaced, not changed.

Mutable variable:

result = 0

for i in range(10):

result = result + i

Mutable data structure:

result = []

for i in range(10):

result.append(i)

Immutable variable:

def add(i):

if i < 10:

return i + add(i+1)

else:

return 0

result = add(0)

Immutable data structure:

def appended(i):

if i < 10:

return [i] + appended(i+1)

else:

return []

result = appended(0)
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Why impose this limitation? Because calculations are distributed.

I It is extremely difficult to maintain consistent values for mutable
variables across computers in a network (CAP theorem).

I Multiple threads in the same computer acting on a shared variable
can easily corrupt it.

Example: concurrent access to a mutable counter.

def updateCounter ():

# step 1

currentValue = getCounterValue ()

# step 2

newValue = currentValue + 1

# step 3

setCounterValue(newValue)
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Curse of immutable data: large data structures must be replaced by a
new version for each change, suggesting an expensive copy.

Blessing of immutable data: if immutable (and acyclic), multiple versions
can share parts without fully copying.

ys = xs with e added to f

Only the path from f to root needs
to be duplicated.

update “copy”

mutable O(1) O(n)

immutable O(log(n)) O(1)
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A monoid is a group without inverses:

I an identity: 0 for which a + 0 = a

I an associative operator: a + (b + c) = (a + b) + c

@case class Ratio(numer , denom ):

def add(self , other ):

return Ratio(self.numer + other.numer ,

self.denom + other.denom)

def value(self):

return self.numer / self.denom
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A distributed calculation can be made out of small, single-threaded
mini-programs called Actors.

I Actors have a mailbox that accumulates messages in a queue.

I Their only behavior is to react to these messages, one at a time.

I They can send messages to other actors.

I They can freely use
mutable variables to
process a message, and
may or may not be
allowed to maintain
persistent, mutable state.
(Would not be fail-fast.)

I The Akka framework is a
popular example.
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C/C++ and Java declare and check data types during compilation to
generate more efficient bytecode.

Python and R only check types immediately before they are used.

But a compile-time (static) type check is also a great way to prevent
human error, especially in large or long-running calculations.

I My most common bug involved a Python None (representing a
missing value) entering arithmetic expressions.

I Requiring explicitly named classes is safer than generic tuples or
argument lists with many parameters of the same type.

I Wrappers around numbers prevents unit mismatches, as does
CMSSW’s distinction between vectors and affine points.

I A type check for matrix dimensions would be a great tool.
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Example: preventing all “null” errors at runtime.

I C/C++ raises a segmentation fault when reading NULL pointers.

I Java raises an exception that provides a line number in the code.

I Python’s null is None, which raises an exception if you try to use it
in arithmetic.

I Some languages convert it to zero and move on!

Scala has a wrapper type for objects that could be null: Option[T].

var x: Option[Double] = Some (3.14)

x = None

var y: Double = x match {

case Some(y) => y + 3 // y is a new variable

case None => -999 // no new variables in this scope

}

The type system forces the programmer to handle the null case; the
above code will never raise an exception at runtime.
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I Data scientists cover the same range of activities as experimental
high-energy physicists, but work with a broader class of models for
more diverse purposes.

I Some of these statistical techniques could be useful in physics.

I The software tools could be useful as well:

I Spark for iterative map-reduce could formalize and accelerate
alignment and calibration.

I Streaming processors or a lambda architecture could aid data
monitoring.

I Data scientists use more high-level programming languages and
techniques, which reduce debugging time.

I Doesn’t have to be the JVM. New languages (Rust, Julia,
Numba just-in-time compiler for Python) produce native
bytecode with high-level abstractions.


