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Preamble
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e |nstitutions currently involved UCSD, Cornell and Princeton
- including PI’s, ~10 people working on it (all with limited fraction of the time):
- G.Cerati, M.Tadel, F.Wirthwein, A.Yagil (UCSD)
- S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)
— P.Elmer (Princeton)
- recently supported by NSF with the Physics at the Information Frontier program

e R&D project is work in progress
— this seminar is an overview and all results are intended to be preliminary/explorative studies
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s LHC plans
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CMS Ex eriment
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e Reconstruction time diverges at large (=100) PU
— CPU frequency does not scale with Moore’s law anymore

- current model cannot be used at HL-LHC without compromises on physics!

1975 1980 1985 1990 1995

- Tracking takes the largest fraction of the reconstruction time

e But Moore’s law still holds for the number of transistors
- Highly parallel architectures now popular in the market,

can we exploit them to increase the physics sensitivity?

G. Cerati (UCSD)
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A

Cores

Logical Cores
Frequency
GFLOPs (double)
SIMD width
Memory
Memory B/W

New architectures

Xeon E5-2670 Xeon Phi 5110P Tesla K20X
8 60 14 SMX
16 (HT) 240 (HT) 2,688 CUDA cores

2.60GHz 1.053GHz 735MHz
333 1,010 1,317
256 Bits 512 Bits N/A
~16-128GB 8GB 6GB

51.2GB/s 320GB/s 250GB/s

Many-core architectures have lower clock frequency and lower memory than
traditional multi-cores, but feature SIMD units and a large number of cores for a

G. Cerati (UCSD)

much larger nominal throughput
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Uesh Goals

* Need large speedup factors, both for online and offline processing
e Online event selection

— faster processing allows for more advanced reconstruction and selection

— higher efficiency with respect to offline selection

- increased purity allows decrease of thresholds for higher sensitivity

e Offline event reconstruction

— faster reconstruction means no cuts in physics phase space to fit into time budget:
more efficiency, better resolution, higher sensitivity

- more data processed: easier reprocessing, larger MC samples, no data parking

e Eventually the full event reconstruction will have to be ported, but it is natural to
start from the most time consuming algorithm, track reconstruction

e Algorithms cannot be ported in a straightforward way, need to exploit architecture
features or will end up in slower processing
- may need hardware-specific solutions for optimal performance
e But it’s likely there will be heterogeneous solutions, possibly site-dependent
- algorithm design has to be generic and applicable to different architectures

G. Cerati (UCSD) FNAL - 2016/01/13 7



i Why Xeon Phi?

We started with no real prejudice on a specific architecture
e Xeon Phi good starting point since it is not too far from traditional programming

e Main features (vector units, many cores) present in smaller scale also on Xeon
- direct porting of solutions/improvements across the two architectures

e But SIMD and non-SIMD processing levels are also used in GPU/CUDA
programming model

- algorithm design or choices may also be valid for GPU

e Convenient choice given large investment for next-generation supercomputers
based on Xeon Phi
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Why Kalman Filter?

Kalman filter tracking commonly used in HEP collision experiments.
Robust treatment of material effects, so it is particularly suitable for silicon tracker.
Outstanding performance at the LHC, e.g. CMS.
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* Tracking based on Kalman Filter, divided in 3+ main steps:
» seeding, pattern recognition, fitting and selection

e Procedure repeated iteratively, removing hits associated to
high quality tracks (“High Purity”) to reduce combinatorics

Achieved outstanding performance:
— high efficiency below 1 GeV

— sizable efficiency even at R=50 cm

Displaced tracks, — inclusive tracking for all collision vertices
strip seeding

FNAL - 2016/01/13
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Experimental setup

Simplified, standalone tracking code:

e Tracker with 10 barrel layers, perfectly cylindrical,
separated by AR=4 cm

e Longitudinal bounds: |n|<1

e 3.8 T magnetic field, coaxial with the tracker

e Assume beam spot width Imm in xy and 1cm in z
e Hit resolution 100pum in r-phi, Imm in z

e No material, no inefficiencies

e Work in global coordinates

e Particle-gun generation of tracks with 0.5<pt<10 GeV
e Tracks uncorrelated for now, no jets, no decays

e Hits are recorded smearing the ideal crossing point by
the assumed resolution, hit uncertainty set equal to
resolution.

Simplified setup is the starting point,
we are gradually increasing complexity towards full simulation

G. Cerati (UCSD) FNAL - 2016/01/13 10



UeSD Kalman Filter: basics

The Kalman filter can be seen as the iterative repetition of the same logic unit.

updated state _ _
P XNN=xN-1y+Kn* (Mn=Hn e xN-1N)

after N
.“ég—N o
e Smallest logic unit is the base both of track
Nth measurement ——— IMIN fitting and track building
propagation to N —— =Fn-1-XN"1n-1

e After updating with the hit measurement,

N the state at layer N has smaller uncertainty
than at layer N-1

e In reality, it is actually a bit more

complicated than this picture

updated state , xN-1 (energy loss, multiple scattering,
after N-1 N1 t hit position re-evaluated using track

N-1 direction)

(X,y,2,pX,pY,pz) t (x,y,2) .
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LeSD Kalman Filter reconstruction

The Kalman Filter track reconstruction o _
searches for hits along the track direction, track building track fit

with a search window that shrinks when .

The track reconstruction process can be

divided in 3 steps: track seeding (initial
track prototype), building (hit finding) and
fitting (final parameter estimate).

more measurements are added.

Q=>0=>0

2
4
O

The track fit is the bare repetition of the
basic unit, ideal as a starting point.

& v

Track building is the most time
consuming part - it involves branching

&V

points of variable size, with the simplest
version degenerating into the track fit case.

seed

D>QD>Q=D>0=> | >0
DOD>O=D>0=D>0=>0

D> QD> QD>

Track seeding not fully implemented yet,
for now seeds are defined using MC info.
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UeSD Challenges for parallelization/vectorization

The current incarnation of the Kalman Filter track building cannot be successfully
parallelized and vectorized in a straightforward way

Each track lives in a different micro-environment
- non-homogeneous workload per track
— difficult for thread balancing

e Branching points (decisions) at each layer

- hardly predictable variable number of branches are created
- intrinsically non-SIMD

e Large use of memory to access geometry, magnetic field, alignment, conditions

e Track fitting not affected by the first two issues: simple starting point

G. Cerati (UCSD) FNAL - 2016/01/13 13
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e Kalman Filter fitting is the repetition of propagation and update of

Track Fitting

parameters through the pre-determined list of hits

e Fit can be forward, backward or a combination of both for ultimate
precision

- Kalman Filter needs an initial state, in our setup it can be both from
simulation or from a fast parabolic fit of 3 points

e Resulting performance are very good, with ~unitary width pulls and

pT resolution 0.5xpT [%]
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R1

R2

Rn

Kalman filter calculations based on small matrices.
Intel Xeon and Xeon Phi have vector units with size 8 and 16 floats respectively.
How can we efficiently exploit them?

Matriplex

Matriplex is a “matrix-major” representation, where vector units elements

are separately filled by a different matrix: n matrices work in sync.

tttnt

vector unit

G. Cerati (UCSD)

In other words, vector units are also used for SIMD parallelization
(in addition to parallelization from threads in different cores)

M'(1,1) M'(1,2) M'(1,N) M'(@2,1) M'(N,N) MI(1,1) M™1(1,2)
M2(1,1) M2(1,2) M2(1,N) M2(2,1) M2(N,N) M™2(1,1) M™2(1,2)
M2(1,1) M2(1,2)

Matrix size NxN, vector unit size n
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— Fitting time and speedup arXiv:1409.8213
MIC - vectorized, single threaded MIC - parallelized, vector size = 16
) 45F - 10
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= 355 MIC Ideal Scali £ | —&— MIC 2 threads/core
&= 35  — eal Scalin = L
o E 9 5 ! —— MIC Ideal Scaling
g 30 S 1E
= 25;— s f
20 .
15;_ 10"
10F- -
5F I
O: | | T | | R R S N RN N B SR .2 \ | | | | | | | | | | | | | | | | | | | ! ! ! |
0 2 4 6 8 10 12 14 16 18 107, 20 40 60 80 100 120
Vector Size Number of threads

Track fit implemented and tested both on Intel Xeon and Xeon Phi (native application) with
OpenMP and got similar qualitative results.

Observe significant speedup both from vectorization and parallelization.
Effective performance of vectorization is about 50% utilization efficiency.

Parallelization performance is close to ideal in case of 1 thread/core, while with 2 threads/core

an overhead is observed.
Both problems related to L1 cache issues.

Demonstrated feasibility on the fitting case, track building is the next target.
G. Cerati (UCSD) FNAL - 2016/01/13 16



= Track Building

UCsD

e Same core calculations as in track fitting but adding two
big complications
e Hit set is not defined: hit on next layer to be chosen between
O(10k) hits

e For >1 compatible hit, combinatorial problem requires cloning
of candidates

e The two issues can be factorized by dividing the
development in two stages

o first develop a simplified algorithm choosing only the best hit
on next layer
e deal with large number of hits, not with cloning
e study vectorization in this case first
e then full implementation with combinatorial expansion
e parallelization already using this version!

G. Cerati (UCSD) FNAL - 2016/01/13
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= Space Partitioning for Track Building

UCSD

e Data locality is the key for reducing the Nhits problem
- partition the space without any detailed knowledge of the detector geometry structures

- eta partitions are self consistent (no bending)
» bins redundant in terms of hits, track candidates never search outside their eta bin
» simple boundary for thread definitions

- phi partitions give fast lookup of hits in compatibility window

eta partitions:

bin : bin0 : binl: bin2 : bin3 : bind : bin5: bin6: ... : ... :binN-1 binN
* tracks. - | E E E
] ] 1 1
] ] 1 1
hits 1 ] : i
< ! : : :
minEta maxEta

phi partitions:

) — <7,0> <10,0>
<0,1> <1,2> <3,3> <6,1> <«7,2> <9,1>

G. Cerati (UCSD) FNAL - 2016/01/13 18
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Hit Finding Performance
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e Simulate events with 20k tracks per event
» reconstruct using seeds taken from MC truth

e Combinatorial Algorithm: 96% (99%) of tracks found with =90% (60%) of the hits.

e BestHit version: 94% (98%) of tracks found with =90% (60%) of the hits.
» BestHit algorithm not expected to behave so well with fully realistic setup
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_ : : ; arXiv:
b Vectorization Results for Best Hit Approach |1s0s.04540
Xeon - vectorized, single threaded Xeon Phi - vectorized, single threaded
— 8 — 45
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Vector Size Vector Size

e Run simplified track building (best hit) on 10 events with 20k tracks each
» pick hit in compatibility window with lowest chi2 at each layer

e Already much more difficult than fitting case, expect worse results:

» test multiple (non pre-determined) hits per track
— compatibility window and hits to process are not fully defined until propagation to layer

e Results show a maximum speedup of >2x both on Xeon and Xeon Phi
» reasonable scaling on Xeon

» overhead observed when enabling vectorization on Xeon Phi, then speedup
— further gain from using prefetching and gathering instrinsics, but data input still takes large fraction of time!

G. Cerati (UCSD) FNAL - 2016/01/13 20



s - - ; : TPAT arXiv:
s, Parallelization Results for Combinatorial Building |;s05.04540
Xeon - parallelized, vector size = 8 Xeon Phi - parallelized, vector size = 16 (int.)
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e Run full track building with combinatorial expansion of candidates
» ultimate physics performance, slower

e Parallelization is implemented by distributing threads across 21 eta bins
» for nEtaBin multiple of nThreads, split eta bins in threads
» for nThreads multiple of nEtaBin, split seeds in bin across nThreads/nEtaBin threads

e Large speedup achieved, both on Xeon and Xeon Phi
» up to ~5x on Xeon and >10x Xeon Phi
» speedup saturates above nThreads=42

G. Cerati (UCSD) FNAL - 2016/01/13 21



= Bottlenecks of single threaded running

UCSD

Hotspots Analysis from VTune Intel profiler

# Advanced Hotspots Hotspots viewpoint (change) @

B Collection Log | @ Analysis Targe Analysis Type M Summary BeREENCIaRs
Grouping: | Function / Call Stack s b @) &)
| CPU Time = p
Function / Call Stack Effective Time by Utiizationv s. 8o B Muons | e | "
|@dle @ Poor @Ok @ Ideal @ Over n.|m
b std::vector<int, std:-allocator<int>>::vector 40772 I 114,991,736,536 728,825,808 0
b_int_free 39.751s [ 136,359,038,066 0 1,125,954,207
b operator new 32 712 I 86.154,002,942 0 0
b atan2f 30.187s I 96,263,571,713 0 0
b bri 14,193 (D 2,656,096,078 0 0
b Matriplex:-MatriplexSym<float, (int)3, (int)8>::Slurpin 13.738s D 27,254,784,743 0 0
b std-vector<Hit, std-:allocator<Hit>>: vector 13 491 D 48,368,155,014 1,447,206,650 6,041,737
b Matriplex::CramerinverterSym<float, (int)3, (int)8>::Invert 8.327s D 15,279,940,773 0 0
bstd::_unguarded_linear_insert<__gnu_cxx::__normal_iterator<Track*, std::vector<Track, std:-allocator<Ti  6.851s [l 40,713,325.132 59.662,888 888,022,699
P ROOT::Math::MatRepSym<float, (unsigned int)6>::operator= 6.092s I 12,600,131,879 0 467,391,832
b _intel_ssse3_rep_memmove 5.754s [ 14,338,306,198 0 0
b std::vector<std: :vector<Track, std:-allocator<Track>>, std:-allocator<std::-vector<Track, std::allocator<T, 4.927s B 8,850,791,643 17.446 13,912,039
b std-vector<EtaBinOfCombCandidates, std::allocator<EtaBinOfCombCandidates>>: - ~vector 4 8381;- 5.514,436,399 0 34,567,836
b MkFitter: : FindCandidates 4 508s [N 11,976,985,333 7.887,339 187,147,759
b std vector<Track, std:-allocator<Track>>: reserve 4334: 1D 7.961,238,732 14,178,785 0
bfree 391850 12,843,035,454 0 0
b std-vector<int, std:-allocator<imt>>: M _emplace_back_aux<int const&> 3012: 18 24,161,489,523 394,041,601 0
b Matriplex: :MatriplexSym<float, (int)6, {int)8>: operator= 281858 9.673,130,099 0 1,350,384.733
b Track: Track 278658 7.584,629.305 93,542,787 463,911,688
b _10_file_write 259258 435,958,384 0 0
b propagateHelix ToRMPlex 22038 3.122,056,392 0 0
bstd::__insertion_sort<__gnu_cxx::__normal_iterator<Track®, std::vector<Track, std::allocator<Tack>>>,1 2.164s[ 7.990,728,691 5,356,129 62,442,951

Leading functions are all memory operations!
Cloning of candidates and loading of hits in cache are the bottlenecks.

(note that atan2f is mainly in event preparation - not counted in timing tests)
G. Cerati (UCSD) FNAL - 2016/01/13 22



= Reducing Impact of Memory Operations

UCsD

e First, avoid resizing of hit indices vector in track object: get 45% speedup
- reserve did not help, move from std::vector to fixed size array

e Then, reduce size of data formats to minimum
- Size of Hit and Track objects is crucial since they have heaviest impact on memory

e Current versions carry data members that are not necessarily needed

- MC truth information, copy of hit vector

- parameters and errors stored as SMatrix objects which are heavier than just the array of floats
e Reduce size of Track by 20% and size of Hit by 40%: get additional 30% speedup

- improve also vectorization speedup by ~20%

e At the same time, we tested a new strategy to reduce the impact of memory
operations: the cloning engine
- basically the idea is to avoid/minimize memory operations in vectorized loops
— delegate them to the cloning engine

G. Cerati (UCSD) FNAL - 2016/01/13 23
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candidates for

G. Cerati (UCSD)

Cloning: previous approach

sort temp vector and
clean exceeding clones

A

- all candidates processed

go to next hit

A N~

fail

clone candidate
update with hit

push in temp vector

45

L>|test chi2<cut

T

loop over hits in window

T

propagate candidate to layer

FNAL - 2016/01/13
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candidates for
next layer ready

G. Cerati (UCSD)

Cloning engine approach

. sort bookkeep list,
clone and update only the best N

A

- all candidates processed

go to next hit

fail

L>|test chi2<cut

T

TN

add entry in bookkeep list

/pass

loop over hits in window

T

propagate candidate to layer

FNAL - 2016/01/13
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= Threaded cloning engine approach

UCsD

Main thread

go to next hit

A

fail

= test chi2<cut

T

Auxiliary thread

sort bookkeep list,
clone and update only the best N

\ all candidates processed
for one seed

add entry in bookkeep list

/. S

read list

loop over hits in window

T

candidates for

propagate candidate to layer

G. Cerati (UCSD)
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s Cloning Engine Performance

Cloning engine gives larger speedup from vectorization.

Threaded cloning engine gives significant speedup over serial cloning engine: 25-35%
(full utilization of parallel threads would be 50%).

L L L B B B e e p LU B B B B e S B B e e

e e S L B m s e
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L e e e e S LA S S s S, e, s
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A

main auxiliary event
thread thread preparation

event
processing
(repeated 10x)

Impact of cloning engine smaller when using reduced data formats,
but the two approaches are not exclusive.

% Advanced Hotspots Hotspots viewpoint (change)

Q Bottom-up

Grouping Function / Call Stack

CPU Time w@

- - 2 Instructions Estimated Total teration Loop Entry

Function / Call Stack Effective Time by Utilizationw B Bo@ R»?tlr»?ud Call Count Count Count o

@lidle @Poor [J Ok @ideal @ Over m n

V | une re po rt atan2f 30.159s I 95,864,160,737 0 0 0
MkFitter: :FindCandidatesMinimizeCopy ey 00 | 50,085.135.005 7.775.125 179,018,687 7.730.839
afte r al I operator new 12 322« 27,901,756,809 0 0 0
Matriplex::CramerinverterSym<float, (int)3, (int)8>:Invert 7.761« GG 17,991,701,816 0 0 0

m e m O ry Matriplex: :MatnplexSym<float, (int)3, (int)8>::Shurpin 7 060 D 17,574,370,358 0 0 0
¢ 433 D 1.282.435.538 0 0 0

brk
i m p rove m e nts . std. vector<tEtaBinOfCombCandidates, std. allocator<EtaBinOfCombCandidates>>. . ~vector] 4.716s [l 4.450,931.137 0 22,846,449 4,027
" propagateHelix ToRMPlex 3.783s D 6,561,255.679 0 0 0
many Calcu Iation std:-vector<Hf, std::allocator<Mit>>::vector 3213s 10,539,357,736 231,775,537 5,768,326 1,908,159
_int_free 2 614;. 9,187,753.040 0 34,222,848 34,222,848
fu n Ct i O n S n OW at Matniplex: :MatnplexSym<float, (int)6, (int)8>: operator= 22981 11,572.087.652 0 1,329.030.148 192,446,999
MkFitter: :UpdateWithHit 2272s18 9.663,323.805 8.685.821 34,538,088 8.612.675
the t0p| std. vector<Track, std. allocator<Wack>>: reserve 215318 7.206,921.024 13.868.341 0 0
" Matriplex: :Matnplex<int, (nt)1, (int)1, (int)8>::operator() 1.76asB 4,085,086,597 0 0 0
Matriplex::Matnplex<int, (int)1, (int)1, (int)8>::operator() 16245 3.347.441,267 0 0 0
log 144658 2,465,103,864 0 0 0
Track:: addHtidx 1 37?‘.. 2,397,217.850 0 0 0
Matriplex: :MatnplexSym<float, (int)6, (int)8>::Copyin 112358 4,949,372.643 0 0 0
runBuidingTestPlex 1 11,=n' 6.441.630.853 0 99,754,169 14,519,296
MkFitter: . countinvalidHits 1.095s8 3.880.344,379 0 62,812,371 7.483.249
Matriplex::MatriplexSym-<float. (int)6, (int)8>::Copyin 1.033s) 5.662,904,533 0 613.557.490 61,631,466
tan 101758 1,982,264,420 0 0 0
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= Further ideas to improve vectorization

SD

Further analysis revealed one bottleneck for non ideal vectorization performance

We process 8/16 candidates in the same vector unit on Xeon/XeonPhi

Different number of probed hits per candidate lead to dead time
- in case the search window is very different

- in case the local occupancy is very different

- in case there is a track that goes crazy

Main idea for further improvement is to sort track candidates in a smart way
- sort by position on next layer, sort by curvature, sort by chi2, ...
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Understanding parallelization issues

e Previous results on Xeon consistent with a serial workload of ~25% of T1 execution
- Fit to Amdahl’s Law: T = T1 * (0.74/Nthreads + 0.26)

e Largest contribution coming from re-instantiation of a data structure at each event

e Replacing deletion/creation with simple reset gave large improvement
- Amdahl still fits: T=T1 * (0.91/Nthreads + 0.09)
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e Significant residual contribution to non-ideal scaling is due to non-uniformity of
occupancy within threads, i.e. some threads take longer than others
- clear limitation of distributing the thread work among eta bins
- also eta bins are problematics in case of a beam spot with large longitudinal width

G. Cerati (UCSD)

e Work ongoing to define strategies for an efficient ‘next in line’ approach or a dynamic

reallocation of thread resources
FNAL - 2016/01/13
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ﬁ Summary of recent improvements

Large speedup even in serial case

— contributions from many fixes at 10-50% speedup level

Vectorization is improved from reduction of impact of memory operations:
— better data structures

- cloning engine

Parallelization is improved by identifying and fixing the serial code

Further ideas mostly related to reduce the imbalance for threads and vector units
- plus improvements for the cloning engine for parallelization: use it with hyper-threading?

Overall achieved a good understanding of the Xeon (Phi) features with our
standalone/simplified setup: how far are we from reality?
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UeSD Full simulation results

e We are working towards reconstructing tracks from a full simulation
or from real detector data
- non ideal geometry, material effects
— detector inefficiencies, non-gaussian tails in hit position
- particle clustering in jets, particle decays

e The simplest way to do this is to interface with CMSSW
- indirect way, dumping and reading from an ntuple

- save and link information from all tracking-related collections
» hits, seed, tracks - both simulated and reconstructed
- maximal flexibility:
» use simulation, local reconstruction or steps in global reconstruction as our starting point
» allow direct comparison of same events with CMSSW reconstruction (but this is not so straightforward)

- can be useful for all sort of tracking studies in CMS

G. Cerati (UCSD) FNAL - 2016/01/13
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Material in CMSSW reconstruction
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In CMSSW the tracker material is
parametrized in terms for
radiation length (radlL) and

energy loss (€ = Kz?Z/A term in

Bethe-bloch formula)

All material (including services) is
assumed on the detector module,

so the effect is that the
parameters are flat in phi but
vary significantly vs r and z

We parametrize these values vs |
z| for each layer.
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A

Detector geometry

UCSD
hr ..
Average radii [cm]:
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Build reco geometry with cylindric barrel layer at average radii.
First propagation step to average radii, find hits in compatibility window.

For hits in window, perform second propagation step:
compute chi2 and update parameters at exact hit radius.

Advantage: work with a simplified geometry, no need to store in memory geometry
structure details. Easy to readapt to different detectors with similar structure.
Disadvantage: compatibility window has to be inflated to correct for spread in R.
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Hit Finding Performance
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e Switch to single event with 500 tracks, only one eta bin

» select tracks without inefficiencies in CMSSW

» hit smearing done in our code when starting from Sim Hits
e Hit finding for 10 GeV muons looks very good

» 99.6% of the tracks have at least 9 found hits when starting from Sim Hits

» 93% of the tracks have at least 9 found hits (95% at least 6) when starting from Rec Hits
e Worse performance for low pt tracks, currently under investigation
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Conclusions

R&D project for tracking on Xeon Phi gives promising preliminary results

large speedup both from vectorization and parallelization

Main bottlenecks are identified
Further improvements are being explored, many already implemented
Code interfaced to CMS full simulation, geometry and material properties

already good performance, especially for high pr tracks

Next steps:

improve performance using full simulation input, including collision events (with PU)
complete fully vectorized/parallelized tracking chain: seeding+building+fitting
consolidation/implementation of new ideas

explore other architectures (GPU already started)
comparison with current reconstruction model
porting and deployment in official reconstruction
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