
G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

Computing Techniques Seminar
FNAL - Jan. 13, 2016

G. Cerati (UCSD) FNAL - 2016/01/13

Preamble

• Institutions currently involved UCSD, Cornell and Princeton
- including PI’s, ~10 people working on it (all with limited fraction of the time):

- G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
- S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)
- P.Elmer (Princeton)

- recently supported by NSF with the Physics at the Information Frontier program

• R&D project is work in progress
- this seminar is an overview and all results are intended to be preliminary/explorative studies

2

G. Cerati (UCSD) FNAL - 2016/01/13 3

LHC plans

LHC is now close to its maximum
collision energy. Need as much
data as possible to see evidence

of extremely rare processes
accessible at this energy.

LHC is planning a smooth
increase in instantaneous

luminosity until the end of Run3.
Then, the HL-LHC is planned

with a luminosity of 5E34.

G. Cerati (UCSD) FNAL - 2016/01/13 4

High Lumi means High Pile-up

G. Cerati (UCSD) FNAL - 2016/01/13

Reconstruction time vs PU

• Reconstruction time diverges at large (≥100) PU
- CPU frequency does not scale with Moore’s law anymore
- current model cannot be used at HL-LHC without compromises on physics!
- Tracking takes the largest fraction of the reconstruction time

• But Moore’s law still holds for the number of transistors
- Highly parallel architectures now popular in the market,  

can we exploit them to increase the physics sensitivity?

5

G. Cerati (UCSD) FNAL - 2016/01/13 6

New architectures

Many-core architectures have lower clock frequency and lower memory than
traditional multi-cores, but feature SIMD units and a large number of cores for a

much larger nominal throughput

G. Cerati (UCSD) FNAL - 2016/01/13

Goals

• Need large speedup factors, both for online and offline processing
• Online event selection

- faster processing allows for more advanced reconstruction and selection
- higher efficiency with respect to offline selection
- increased purity allows decrease of thresholds for higher sensitivity

• Offline event reconstruction
- faster reconstruction means no cuts in physics phase space to fit into time budget:  

more efficiency, better resolution, higher sensitivity
- more data processed: easier reprocessing, larger MC samples, no data parking

• Eventually the full event reconstruction will have to be ported, but it is natural to
start from the most time consuming algorithm, track reconstruction

• Algorithms cannot be ported in a straightforward way, need to exploit architecture
features or will end up in slower processing
- may need hardware-specific solutions for optimal performance

• But it’s likely there will be heterogeneous solutions, possibly site-dependent
- algorithm design has to be generic and applicable to different architectures

7

G. Cerati (UCSD) FNAL - 2016/01/13

Why Xeon Phi?

• We started with no real prejudice on a specific architecture

• Xeon Phi good starting point since it is not too far from traditional programming

• Main features (vector units, many cores) present in smaller scale also on Xeon
- direct porting of solutions/improvements across the two architectures

• But SIMD and non-SIMD processing levels are also used in GPU/CUDA
programming model
- algorithm design or choices may also be valid for GPU

• Convenient choice given large investment for next-generation supercomputers
based on Xeon Phi

8

G. Cerati (UCSD) FNAL - 2016/01/13 9

Why Kalman Filter?

• Tracking based on Kalman Filter, divided in 3+1 main steps:
‣seeding, pattern recognition, fitting and selection

• Procedure repeated iteratively, removing hits associated to  
high quality tracks (“High Purity”) to reduce combinatorics

Achieved outstanding performance:
⟹ high efficiency below 1 GeV
⟹ sizable efficiency even at R=50 cm
⟹ inclusive tracking for all collision verticesPrompt tracks,

pixel seeding

 B decay tracks,
mixed seeding

 Displaced tracks,
strip seeding

PoS Vertex2014 (2015) 037

Kalman filter tracking commonly used in HEP collision experiments.
Robust treatment of material effects, so it is particularly suitable for silicon tracker.

Outstanding performance at the LHC, e.g. CMS.

G. Cerati (UCSD) FNAL - 2016/01/13

Experimental setup

10

Simplified, standalone tracking code:
• Tracker with 10 barrel layers, perfectly cylindrical,
separated by ΔR=4 cm
• Longitudinal bounds: |η|<1
• 3.8 T magnetic field, coaxial with the tracker
• Assume beam spot width 1mm in xy and 1cm in z
• Hit resolution 100µm in r-phi, 1mm in z
• No material, no inefficiencies
• Work in global coordinates

• Particle-gun generation of tracks with 0.5<pT<10 GeV
• Tracks uncorrelated for now, no jets, no decays
• Hits are recorded smearing the ideal crossing point by
the assumed resolution, hit uncertainty set equal to
resolution.

Simplified setup is the starting point,
we are gradually increasing complexity towards full simulation

G. Cerati (UCSD) FNAL - 2016/01/13 11

Kalman Filter: basics

(x,y,z,px,py,pz) (x,y,z)

Figure 2. Left: Basic unit of the Kalman Filter algorithm. At each step, position information
from hits is used to estimate the track parameters and their uncertainties. The red circle
represents the measurement (a hit). The blue point on layer N represents the estimated state
(position and direction) at layer N before taking into account information from hits on that
layer. The yellow point is the updated state at layer N , taking into account all hits from up to
and including layer N . Right: Cartoon representing the two stages of fitting: forward fit and
backward smoothing. For this test we do not perform a smoothing step.

h_pt_pull_fit
Entries 47724
Mean -0.3016
RMS 1.338
Underflow 1026
Overflow 322
Prob 1.7e-08
Constant 10.5± 1731
Mean 0.0050± -0.2683
Sigma 0.004± 1.038

)fit
T

(pσ)/fit
T

 - pMC
T

(p
-10 -8 -6 -4 -2 0 2 4 6 8 10

Tr
ac

ks

0

200

400

600

800

1000

1200

1400

1600

1800

h_pt_pull_fit
Entries 47724
Mean -0.3016
RMS 1.338
Underflow 1026
Overflow 322
Prob 1.7e-08
Constant 10.5± 1731
Mean 0.0050± -0.2683
Sigma 0.004± 1.038

 Pull MC-Fit
T

p
h_x_pull_update

Entries 490249
Mean 0.0005957
RMS 1.233
Underflow 2763
Overflow 2820
Prob 0
Constant 6.614e+01± 3.559e+04
Mean 0.001587± 0.001464
Sigma 0.001± 1.069

)update(xσ)/update - xinit(x
-10 -8 -6 -4 -2 0 2 4 6 8 10

Hi
ts

0

5000

10000

15000

20000

25000

30000

35000

h_x_pull_update
Entries 490249
Mean 0.0005957
RMS 1.233
Underflow 2763
Overflow 2820
Prob 0
Constant 6.614e+01± 3.559e+04
Mean 0.001587± 0.001464
Sigma 0.001± 1.069

x Pull Init Hit-Update Hit

Figure 3. p

T

and position pull plots for the fit. The performance of the fit is under control.

As can be seen in Fig. 2 (right), the track fit consists of the simple repetition of the basic logic
unit for all the pre-determined track hits and therefore it is the easiest case to test. It is divided in
two steps: a forward fit and a backward smoothing stage for optimal performance. For this test,
only forward fit is run. The Kalman Filter requires initial estimation of track parameters to get
started. In our test, the starting state is taken directly from simulation with 100% uncertainty.
As a more realistic option, we also implemented a parabolic fit in the conformal space to define
initial parameters. For the fitting test, the hits are attached to a track “by name” (i.e., no
pattern recognition is performed) and a Kalman Filter fitting stage is performed. Figure 3
shows the p

T

and position pulls for the resulting fit with Gaussian distributions consistent with

• Smallest logic unit is the base both of track
fitting and track building

• After updating with the hit measurement,
the state at layer N has smaller uncertainty
than at layer N-1

• In reality, it is actually a bit more
complicated than this picture  
(energy loss, multiple scattering,  
hit position re-evaluated using track
direction)

The Kalman filter can be seen as the iterative repetition of the same logic unit.

G. Cerati (UCSD) FNAL - 2016/01/13 12

Kalman Filter reconstruction

Figure 2. Left: Basic unit of the Kalman Filter algorithm. At each step, position information
from hits is used to estimate the track parameters and their uncertainties. The red circle
represents the measurement (a hit). The blue point on layer N represents the estimated state
(position and direction) at layer N before taking into account information from hits on that
layer. The yellow point is the updated state at layer N , taking into account all hits from up to
and including layer N . Right: Cartoon representing the two stages of fitting: forward fit and
backward smoothing. For this test we do not perform a smoothing step.

h_pt_pull_fit
Entries 47724
Mean -0.3016
RMS 1.338
Underflow 1026
Overflow 322
Prob 1.7e-08
Constant 10.5± 1731
Mean 0.0050± -0.2683
Sigma 0.004± 1.038

)fit
T

(pσ)/fit
T

 - pMC
T

(p
-10 -8 -6 -4 -2 0 2 4 6 8 10

Tr
ac

ks

0

200

400

600

800

1000

1200

1400

1600

1800

h_pt_pull_fit
Entries 47724
Mean -0.3016
RMS 1.338
Underflow 1026
Overflow 322
Prob 1.7e-08
Constant 10.5± 1731
Mean 0.0050± -0.2683
Sigma 0.004± 1.038

 Pull MC-Fit
T

p
h_x_pull_update

Entries 490249
Mean 0.0005957
RMS 1.233
Underflow 2763
Overflow 2820
Prob 0
Constant 6.614e+01± 3.559e+04
Mean 0.001587± 0.001464
Sigma 0.001± 1.069

)update(xσ)/update - xinit(x
-10 -8 -6 -4 -2 0 2 4 6 8 10

Hi
ts

0

5000

10000

15000

20000

25000

30000

35000

h_x_pull_update
Entries 490249
Mean 0.0005957
RMS 1.233
Underflow 2763
Overflow 2820
Prob 0
Constant 6.614e+01± 3.559e+04
Mean 0.001587± 0.001464
Sigma 0.001± 1.069

x Pull Init Hit-Update Hit

Figure 3. p

T

and position pull plots for the fit. The performance of the fit is under control.

As can be seen in Fig. 2 (right), the track fit consists of the simple repetition of the basic logic
unit for all the pre-determined track hits and therefore it is the easiest case to test. It is divided in
two steps: a forward fit and a backward smoothing stage for optimal performance. For this test,
only forward fit is run. The Kalman Filter requires initial estimation of track parameters to get
started. In our test, the starting state is taken directly from simulation with 100% uncertainty.
As a more realistic option, we also implemented a parabolic fit in the conformal space to define
initial parameters. For the fitting test, the hits are attached to a track “by name” (i.e., no
pattern recognition is performed) and a Kalman Filter fitting stage is performed. Figure 3
shows the p

T

and position pulls for the resulting fit with Gaussian distributions consistent with

seed

track fittrack building
The Kalman Filter track reconstruction

searches for hits along the track direction,
with a search window that shrinks when

more measurements are added.

The track reconstruction process can be
divided in 3 steps: track seeding (initial

track prototype), building (hit finding) and
fitting (final parameter estimate).

The track fit is the bare repetition of the
basic unit, ideal as a starting point.

Track building is the most time
consuming part - it involves branching
points of variable size, with the simplest

version degenerating into the track fit case.

Track seeding not fully implemented yet,
for now seeds are defined using MC info.

G. Cerati (UCSD) FNAL - 2016/01/13

Challenges for parallelization/vectorization

• The current incarnation of the Kalman Filter track building cannot be successfully
parallelized and vectorized in a straightforward way

• Each track lives in a different micro-environment
- non-homogeneous workload per track
- difficult for thread balancing

• Branching points (decisions) at each layer
- hardly predictable variable number of branches are created
- intrinsically non-SIMD

• Large use of memory to access geometry, magnetic field, alignment, conditions

• Track fitting not affected by the first two issues: simple starting point

13

G. Cerati (UCSD) FNAL - 2016/01/13

Track Fitting

• Kalman Filter fitting is the repetition of propagation and update of
parameters through the pre-determined list of hits

• Fit can be forward, backward or a combination of both for ultimate
precision
- Kalman Filter needs an initial state, in our setup it can be both from

simulation or from a fast parabolic fit of 3 points
• Resulting performance are very good, with ~unitary width pulls and

pT resolution 0.5×pT [%]

14

mcθ - CF Fitθ
0.04− 0.02− 0 0.02 0.04

nT
ra

ck
s

1

10

210

310

410

 Residual (CF Fit Track vs. MC Track)θ
Entries 100000
Underflow 0
Overflow 0
Prob 0
Constant 5.200e+01± 1.214e+04
Mean 05− 1.030e±06 −1.128e−
Sigma 0.000009± 0.003228

 Residual (CF Fit Track vs. MC Track)θ

-1 [GeV/c]mc
T

 - 1/p-1 [GeV/c]CF Fit
T

1/p
0.04− 0.02− 0 0.02 0.04

nT
ra

ck
s

10

210

310

410

 Residual (CF Fit Track vs. MC Track)
T

1/p Entries 100000
Underflow 1253
Overflow 982
Prob 0
Constant 21.5± 5106
Mean 05− 2.416e±05 −6.373e−
Sigma 0.000020± 0.007462

 Residual (CF Fit Track vs. MC Track)
T

1/p

Forwards CF Fit!

8 January 2016! K. McDermott! 16!

)Fitη(σ)/mcη - Fitη(
5− 4− 3− 2− 1− 0 1 2 3 4 5

nT
ra

ck
s

1

10

210

310

 Pull (Fit Track vs. MC Track)η
Entries 100000
Underflow 698
Overflow 757
Prob 0.3789
Constant 15.1± 3774
Mean 0.0033797±0.0008231 −
Sigma 0.003± 1.038

 Pull (Fit Track vs. MC Track)η

)Fitφ(σ)/mcφ - Fitφ(
5− 4− 3− 2− 1− 0 1 2 3 4 5

nT
ra

ck
s

10

210

310

 Pull (Fit Track vs. MC Track)φ
Entries 100000
Underflow 1564
Overflow 1581
Prob 10− 1.665e
Constant 14.2± 3418
Mean 0.003728± 0.005377
Sigma 0.003± 1.114

 Pull (Fit Track vs. MC Track)φ

) [GeV/c]Fit
T

(pσ [GeV/c])/mc
T

 [GeV/c] - pFit
T

(p
5− 4− 3− 2− 1− 0 1 2 3 4 5

nT
ra

ck
s

10

210

310

 Pull (Fit Track vs. MC Track)
T

p Entries 100000
Underflow 1556
Overflow 1865
Prob 35− 3.873e
Constant 14.0± 3330
Mean 0.00384± 0.04825
Sigma 0.003± 1.134

 Pull (Fit Track vs. MC Track)
T

p

mcφ - CF Fitφ
0.04− 0.02− 0 0.02 0.04

nT
ra

ck
s

10

210

310

410

 Residual (CF Fit Track vs. MC Track)φ
Entries 100000
Underflow 765
Overflow 677
Prob 0
Constant 9.27e+01± 2.12e+04
Mean 06− 5.74e±06 −6.11e−
Sigma 0.000005± 0.001752

 Residual (CF Fit Track vs. MC Track)φ

Final	KF	Fit	Pulls	

Ini8al	CF	Fit	Residuals	

Figure 2. Left: Basic unit of the Kalman Filter algorithm. At each step, position information
from hits is used to estimate the track parameters and their uncertainties. The red circle
represents the measurement (a hit). The blue point on layer N represents the estimated state
(position and direction) at layer N before taking into account information from hits on that
layer. The yellow point is the updated state at layer N , taking into account all hits from up to
and including layer N . Right: Cartoon representing the two stages of fitting: forward fit and
backward smoothing. For this test we do not perform a smoothing step.

h_pt_pull_fit
Entries 47724
Mean -0.3016
RMS 1.338
Underflow 1026
Overflow 322
Prob 1.7e-08
Constant 10.5± 1731
Mean 0.0050± -0.2683
Sigma 0.004± 1.038

)fit
T

(pσ)/fit
T

 - pMC
T

(p
-10 -8 -6 -4 -2 0 2 4 6 8 10

Tr
ac

ks

0

200

400

600

800

1000

1200

1400

1600

1800

h_pt_pull_fit
Entries 47724
Mean -0.3016
RMS 1.338
Underflow 1026
Overflow 322
Prob 1.7e-08
Constant 10.5± 1731
Mean 0.0050± -0.2683
Sigma 0.004± 1.038

 Pull MC-Fit
T

p
h_x_pull_update

Entries 490249
Mean 0.0005957
RMS 1.233
Underflow 2763
Overflow 2820
Prob 0
Constant 6.614e+01± 3.559e+04
Mean 0.001587± 0.001464
Sigma 0.001± 1.069

)update(xσ)/update - xinit(x
-10 -8 -6 -4 -2 0 2 4 6 8 10

Hi
ts

0

5000

10000

15000

20000

25000

30000

35000

h_x_pull_update
Entries 490249
Mean 0.0005957
RMS 1.233
Underflow 2763
Overflow 2820
Prob 0
Constant 6.614e+01± 3.559e+04
Mean 0.001587± 0.001464
Sigma 0.001± 1.069

x Pull Init Hit-Update Hit

Figure 3. p

T

and position pull plots for the fit. The performance of the fit is under control.

As can be seen in Fig. 2 (right), the track fit consists of the simple repetition of the basic logic
unit for all the pre-determined track hits and therefore it is the easiest case to test. It is divided in
two steps: a forward fit and a backward smoothing stage for optimal performance. For this test,
only forward fit is run. The Kalman Filter requires initial estimation of track parameters to get
started. In our test, the starting state is taken directly from simulation with 100% uncertainty.
As a more realistic option, we also implemented a parabolic fit in the conformal space to define
initial parameters. For the fitting test, the hits are attached to a track “by name” (i.e., no
pattern recognition is performed) and a Kalman Filter fitting stage is performed. Figure 3
shows the p

T

and position pulls for the resulting fit with Gaussian distributions consistent with

G. Cerati (UCSD) FNAL - 2016/01/13 15

Matriplex

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N) Mn+1(1,1) Mn+1(1,2) … Mn+1(1,N) Mn+1(2,1) … , … Mn+1(N,N) M2n+1(1,1)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N) Mn+2(1,1) Mn+2 (1,2) … Mn+2 (1,N) Mn+2 (2,1) … , … Mn+2(N,N) M2n+2(1,1)

…

…

…

…

…

…

…

…

…

…

…

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N) M2n(1,1) M2n(1,2) … M2n(1,N) M2n(2,1) … M2n(N,N) M3n(1,1)

fa
st
%m

em
or
y%
di
re
c.
on

%

vector%unit%

R1%

R2%

…
%

Rn%

…

…

…

Figure 4. Memory layout for the new matrix library Matriplex. The layout is optimized for
our problem, which consists of matrix manipulations of low-dimensional matrices. The memory
layout is matrix-major. In the Figure, the matrix dimension is N ⇥N and the vector unit size
is n.

unit width and demonstrates that the fit results are reasonable. The achieved p

T

resolution is
roughly �

pT /pT = 0.005⇥ p

T

.

5. Optimized Matrix Library Matriplex
The computational problem of Kalman Filter-based tracking consists of a sequence of matrix
operations on matrices of sizes from N ⇥N = 3⇥ 3 up to N ⇥N = 6⇥ 6. To allow maximum
flexibility for exploring SIMD operations on small-dimensional matrices, and to decouple the
specific computations from the high level algorithm, we have developed a new matrix library,
Matriplex. The Matriplex memory layout is optimized for the loading of vector registers
for SIMD operations on a set of matrices as shown in Fig. 4. Matriplex includes a code
generator for generation of optimized matrix operations supporting symmetric matrices and
on-the-fly matrix transposition. Patterns of elements which are known by construction to be
zero or one can be specified, and the resulting generated code will be optimized accordingly to
reduce unnecessary register loads and arithmetic operations. The generated code can be either
standard C++ or simple intrinsic macros that can be easily mapped to architecture-specific
intrinsic functions.

6. Results
We present the results of this study in two stages: vectorization and parallelization. In the first
step we restructure the code to allow use of the vector units in Xeon1 and Xeon Phi2 processors.
In the second step we use OpenMP to parallelize the vectorized fitting procedure across the
cores on the large-core and small-core devices.

Figure 5 shows the timing for fitting 1M tracks as a function of the vector size, using a single
thread. Results are compared to scaling of serial processing time (“ideal scaling”), defined as
the time with vector unit size=1 divided by the vector unit size. Both for Xeon and Xeon Phi,
a significant vectorization speedup is achieved, with an e↵ective utilization of the vector units
of ⇠ 50% .

Figure 6 shows the timing for fitting the same set of tracks as a function of the number of
threads, in case all vector units are used. We test two approaches for distributing threads on
the cores: filling every core with one thread or adding a second thread on the same core before
moving to a di↵erent one. We compare to ideal parallelization performance (“ideal scaling”),
assuming no hyperthreading (i.e. a maximum of 12 threads on Xeon, maximum 120 threads
on Xeon Phi). Performance for one thread/core approach follows the ideal curve, with a small

1 CentOS 6.5, 2⇥ 6 core Xeon E5-2620 @ 2GHz, 64 GB RAM, turbo o↵, hyperthreading enabled
2 Xeon Phi 7150, 16 GB RAM, 61 cores @ 1.24GHz

Kalman filter calculations based on small matrices.  
Intel Xeon and Xeon Phi have vector units with size 8 and 16 floats respectively.  

How can we efficiently exploit them?

Matriplex is a “matrix-major” representation, where vector units elements  
are separately filled by a different matrix: n matrices work in sync.

In other words, vector units are also used for SIMD parallelization  
(in addition to parallelization from threads in different cores)

G. Cerati (UCSD) FNAL - 2016/01/13 16

Fitting time and speedup

Track fit implemented and tested both on Intel Xeon and Xeon Phi (native application) with
OpenMP and got similar qualitative results.

Observe significant speedup both from vectorization and parallelization.
Effective performance of vectorization is about 50% utilization efficiency.
Parallelization performance is close to ideal in case of 1 thread/core, while with 2 threads/core
an overhead is observed.  
Both problems related to L1 cache issues.

Demonstrated feasibility on the fitting case, track building is the next target.

Vector Size
0 1 2 3 4 5 6 7 8 9

1M
 tr

ac
ks

 fi
t t

im
e

[s
]

0

1

2

3

4

5

6

7

8
Host Measured

Host Ideal Scaling

HOST - vectorized, single threaded

Vector Size
0 2 4 6 8 10 12 14 16 18

1M
 tr

ac
ks

 fi
t t

im
e

[s
]

0

5

10

15

20

25

30

35

40

45
MIC Measured

MIC Ideal Scaling

MIC - vectorized, single threaded

Figure 5. Timing results for vectorized code, as a function of the vector size, for host (left)
and MIC (right). The results are compared to an ideal scaling described in the text. Significant
speedups compared to serial code are observed.

Number of threads
0 5 10 15 20 25

1M
 tr

ac
ks

 fi
t t

im
e

[s
]

-210

-110

1

10
HOST 1 thread/core

HOST 2 threads/core
HOST Ideal Scaling

HOST - parallelized, vector size = 8

Number of threads
0 20 40 60 80 100 120

1M
 tr

ac
ks

 fi
t t

im
e

[s
]

-210

-110

1

10
MIC 1 thread/core
MIC 2 threads/core
MIC Ideal Scaling

MIC - parallelized, vector size = 16

Figure 6. Timing results for parallelization tests, as a function of the number of threads, for
host (left) and MIC (right). Two di↵erent methods of distributing threads across cores is shown,
and compared to an ideal scaling. We observe ideal scaling when distributing one thread/core.

overhead only when all cores are filled. The two threads per core approach shows deviation from
ideal behavior immediately: on Xeon, this is due to the use of hyperthreading slots, while on
Xeon Phi we surmise it is related to L1 cache contention issues.

7. Future Work: Track Building
Track building is by far the most time-consuming step in the whole event reconstruction and
thus it is the most important next step of development. With respect to track fitting, track
building adds significantly more complexity to the problem as hits are searched for within a
compatibility window when moving to the next layer. The track candidate needs to branch in
case of multiple matches, and the algorithm needs to be robust against missing (due to detector
ine�ciency) or outlier hits (Fig. 7). We implemented a preliminary serial version and tested it
on events with 500 simulated tracks/event, finding a hit finding e�ciency close to 100%. The
inherent branching of the algorithm, along with the variable size of the combinatorial problem,
make it di�cult to vectorize and parallelize it e�ciently; thus, specific design choices have to be
made to boost its computing performance on the coprocessor.

Vector Size
0 1 2 3 4 5 6 7 8 9

1M
 tr

ac
ks

 fi
t t

im
e

[s
]

0

1

2

3

4

5

6

7

8
Host Measured

Host Ideal Scaling

HOST - vectorized, single threaded

Vector Size
0 2 4 6 8 10 12 14 16 18

1M
 tr

ac
ks

 fi
t t

im
e

[s
]

0

5

10

15

20

25

30

35

40

45
MIC Measured

MIC Ideal Scaling

MIC - vectorized, single threaded

Figure 5. Timing results for vectorized code, as a function of the vector size, for host (left)
and MIC (right). The results are compared to an ideal scaling described in the text. Significant
speedups compared to serial code are observed.

Number of threads
0 5 10 15 20 25

1M
 tr

ac
ks

 fi
t t

im
e

[s
]

-210

-110

1

10
HOST 1 thread/core

HOST 2 threads/core
HOST Ideal Scaling

HOST - parallelized, vector size = 8

Number of threads
0 20 40 60 80 100 120

1M
 tr

ac
ks

 fi
t t

im
e

[s
]

-210

-110

1

10
MIC 1 thread/core
MIC 2 threads/core
MIC Ideal Scaling

MIC - parallelized, vector size = 16

Figure 6. Timing results for parallelization tests, as a function of the number of threads, for
host (left) and MIC (right). Two di↵erent methods of distributing threads across cores is shown,
and compared to an ideal scaling. We observe ideal scaling when distributing one thread/core.

overhead only when all cores are filled. The two threads per core approach shows deviation from
ideal behavior immediately: on Xeon, this is due to the use of hyperthreading slots, while on
Xeon Phi we surmise it is related to L1 cache contention issues.

7. Future Work: Track Building
Track building is by far the most time-consuming step in the whole event reconstruction and
thus it is the most important next step of development. With respect to track fitting, track
building adds significantly more complexity to the problem as hits are searched for within a
compatibility window when moving to the next layer. The track candidate needs to branch in
case of multiple matches, and the algorithm needs to be robust against missing (due to detector
ine�ciency) or outlier hits (Fig. 7). We implemented a preliminary serial version and tested it
on events with 500 simulated tracks/event, finding a hit finding e�ciency close to 100%. The
inherent branching of the algorithm, along with the variable size of the combinatorial problem,
make it di�cult to vectorize and parallelize it e�ciently; thus, specific design choices have to be
made to boost its computing performance on the coprocessor.

arXiv:1409.8213

G. Cerati (UCSD) FNAL - 2016/01/13 17

Track Building

• Same core calculations as in track fitting but adding two
big complications
• Hit set is not defined: hit on next layer to be chosen between

O(10k) hits
• For >1 compatible hit, combinatorial problem requires cloning

of candidates

• The two issues can be factorized by dividing the
development in two stages
• first develop a simplified algorithm choosing only the best hit

on next layer
• deal with large number of hits, not with cloning
• study vectorization in this case first

• then full implementation with combinatorial expansion
• parallelization already using this version!

seed

G. Cerati (UCSD) FNAL - 2016/01/13 18

Space Partitioning for Track Building
• Data locality is the key for reducing the Nhits problem

- partition the space without any detailed knowledge of the detector geometry structures
- eta partitions are self consistent (no bending)

‣ bins redundant in terms of hits, track candidates never search outside their eta bin
‣ simple boundary for thread definitions

- phi partitions give fast lookup of hits in compatibility window

bin

tracks

hits

bin0 bin1 bin2 bin3 bin4 bin5 binNbinN-1bin6

minEta maxEta

eta partitions:

phi partitions:

G. Cerati (UCSD) FNAL - 2016/01/13 19

Hit Finding Performance

• Simulate events with 20k tracks per event
‣ reconstruct using seeds taken from MC truth

• Combinatorial Algorithm: 96% (99%) of tracks found with ≥90% (60%) of the hits.

• BestHit version: 94% (98%) of tracks found with ≥90% (60%) of the hits.
‣ BestHit algorithm not expected to behave so well with fully realistic setup

Combinatorial Algorithm 
Best Hit Algorithm

G. Cerati (UCSD) FNAL - 2016/01/13 20

Vectorization Results for Best Hit Approach

• Run simplified track building (best hit) on 10 events with 20k tracks each
‣ pick hit in compatibility window with lowest chi2 at each layer

• Already much more difficult than fitting case, expect worse results:
‣ test multiple (non pre-determined) hits per track

- compatibility window and hits to process are not fully defined until propagation to layer

• Results show a maximum speedup of >2x both on Xeon and Xeon Phi
‣ reasonable scaling on Xeon
‣ overhead observed when enabling vectorization on Xeon Phi, then speedup

- further gain from using prefetching and gathering instrinsics, but data input still takes large fraction of time!

arXiv:  
1505.04540

G. Cerati (UCSD) FNAL - 2016/01/13 21

Parallelization Results for Combinatorial Building

• Run full track building with combinatorial expansion of candidates
‣ ultimate physics performance, slower

• Parallelization is implemented by distributing threads across 21 eta bins
‣ for nEtaBin multiple of nThreads, split eta bins in threads
‣ for nThreads multiple of nEtaBin, split seeds in bin across nThreads/nEtaBin threads

• Large speedup achieved, both on Xeon and Xeon Phi
‣ up to ~5x on Xeon and >10x Xeon Phi
‣ speedup saturates above nThreads=42

arXiv:  
1505.04540

G. Cerati (UCSD) FNAL - 2016/01/13 22

Bottlenecks of single threaded running

Leading functions are all memory operations!
Cloning of candidates and loading of hits in cache are the bottlenecks.  

(note that atan2f is mainly in event preparation - not counted in timing tests)

Hotspots Analysis from VTune Intel profiler

G. Cerati (UCSD) FNAL - 2016/01/13 23

Reducing Impact of Memory Operations

• First, avoid resizing of hit indices vector in track object: get 45% speedup
- reserve did not help, move from std::vector to fixed size array

• Then, reduce size of data formats to minimum
- Size of Hit and Track objects is crucial since they have heaviest impact on memory

• Current versions carry data members that are not necessarily needed
- MC truth information, copy of hit vector
- parameters and errors stored as SMatrix objects which are heavier than just the array of floats

• Reduce size of Track by 20% and size of Hit by 40%: get additional 30% speedup
- improve also vectorization speedup by ~20%

• At the same time, we tested a new strategy to reduce the impact of memory
operations: the cloning engine
- basically the idea is to avoid/minimize memory operations in vectorized loops
- delegate them to the cloning engine

G. Cerati (UCSD) FNAL - 2016/01/13 24

Cloning: previous approach

propagate candidate to layer

loop over hits in window

test chi2<cut

go to next hit

clone candidate  
update with hit 

push in temp vector

sort temp vector and  
clean exceeding clones

fail

pass

all candidates processed

candidates for  
next layer ready

G. Cerati (UCSD) FNAL - 2016/01/13 25

Cloning engine approach

propagate candidate to layer

loop over hits in window

test chi2<cut

go to next hit

add entry in bookkeep list

sort bookkeep list,  
clone and update only the best N

fail

pass

all candidates processed

candidates for  
next layer ready

G. Cerati (UCSD) FNAL - 2016/01/13 26

Threaded cloning engine approach

propagate candidate to layer

loop over hits in window

test chi2<cut

go to next hit

add entry in bookkeep listfail

pass read list

sort bookkeep list,  
clone and update only the best N

Main thread Auxiliary thread

all candidates processed  
for one seed

candidates for  
next layer ready

G. Cerati (UCSD) FNAL - 2016/01/13 27

Cloning Engine Performance
Cloning engine gives larger speedup from vectorization.

Threaded cloning engine gives significant speedup over serial cloning engine: 25-35%  
(full utilization of parallel threads would be 50%).

Impact of cloning engine smaller when using reduced data formats,  
but the two approaches are not exclusive.

event
preparation

event
processing

(repeated 10x)

main
thread

auxiliary
thread

VTune report
after all  
memory

improvements:
many calculation
functions now at

the top!

G. Cerati (UCSD) FNAL - 2016/01/13 28

Further ideas to improve vectorization

• Further analysis revealed one bottleneck for non ideal vectorization performance

• We process 8/16 candidates in the same vector unit on Xeon/XeonPhi
• Different number of probed hits per candidate lead to dead time

- in case the search window is very different
- in case the local occupancy is very different
- in case there is a track that goes crazy

• Main idea for further improvement is to sort track candidates in a smart way
- sort by position on next layer, sort by curvature, sort by chi2, …

G. Cerati (UCSD) FNAL - 2016/01/13 29

Understanding parallelization issues
• Previous results on Xeon consistent with a serial workload of ~25% of T1 execution

- Fit to Amdahl’s Law: T = T1 * (0.74/Nthreads + 0.26)
• Largest contribution coming from re-instantiation of a data structure at each event
• Replacing deletion/creation with simple reset gave large improvement

- Amdahl still fits: T = T1 * (0.91/Nthreads + 0.09)

• Significant residual contribution to non-ideal scaling is due to non-uniformity of
occupancy within threads, i.e. some threads take longer than others
- clear limitation of distributing the thread work among eta bins
- also eta bins are problematics in case of a beam spot with large longitudinal width

• Work ongoing to define strategies for an efficient ‘next in line’ approach or a dynamic
reallocation of thread resources

Scaling Plots Excluding Eta Bin Setup

• Now just exclude one code line that creates eta bins
EventOfCombCandidates event_of_comb_cands;

// constructor triggers a new std::vector<EtaBinOfCandidates>

• Accounts for 0.145s of serial code time (0.155s)
9/18/2015 8

G. Cerati (UCSD) FNAL - 2016/01/13

Summary of recent improvements

• Large speedup even in serial case
- contributions from many fixes at 10-50% speedup level

• Vectorization is improved from reduction of impact of memory operations:
- better data structures
- cloning engine

• Parallelization is improved by identifying and fixing the serial code

• Further ideas mostly related to reduce the imbalance for threads and vector units
- plus improvements for the cloning engine for parallelization: use it with hyper-threading?

• Overall achieved a good understanding of the Xeon (Phi) features with our
standalone/simplified setup: how far are we from reality?

30

G. Cerati (UCSD) FNAL - 2016/01/13 31

Full simulation results

• We are working towards reconstructing tracks from a full simulation  
or from real detector data
- non ideal geometry, material effects
- detector inefficiencies, non-gaussian tails in hit position
- particle clustering in jets, particle decays

• The simplest way to do this is to interface with CMSSW
- indirect way, dumping and reading from an ntuple
- save and link information from all tracking-related collections

‣ hits, seed, tracks - both simulated and reconstructed
- maximal flexibility:

‣ use simulation, local reconstruction or steps in global reconstruction as our starting point
‣ allow direct comparison of same events with CMSSW reconstruction (but this is not so straightforward)

- can be useful for all sort of tracking studies in CMS

G. Cerati (UCSD) FNAL - 2016/01/13 32

Material in CMSSW reconstruction

In CMSSW the tracker material is
parametrized in terms for
radiation length (radL) and

energy loss (ξ = Kz2Z/A term in
Bethe-bloch formula)

All material (including services) is
assumed on the detector module,

so the effect is that the
parameters are flat in phi but
vary significantly vs r and z

We parametrize these values vs |
z| for each layer.

G. Cerati (UCSD) FNAL - 2016/01/13 33

Detector geometry

Average radii [cm]:
PXB1 = 4.42
PXB2 = 7.31
PXB3 = 10.17
TIB1 = 25.65
TIB2 = 33.81
TIB3 = 41.89
TIB4 = 49.67
TOB1 = 60.95
TOB2 = 69.11
TOB3 = 78.19
TOB4 = 86.84
TOB5 = 96.78
TOB6 = 108.10

Build reco geometry with cylindric barrel layer at average radii.
First propagation step to average radii, find hits in compatibility window.

For hits in window, perform second propagation step:  
compute chi2 and update parameters at exact hit radius.

Advantage: work with a simplified geometry, no need to store in memory geometry  
structure details. Easy to readapt to different detectors with similar structure.

Disadvantage: compatibility window has to be inflated to correct for spread in R.

PXB
1,2,3 TI

B1

TI
B2

TI
B3

TI
B4

TO
B1

TO
B2

TO
B3

TO
B4

TO
B5

TO
B6

G. Cerati (UCSD) FNAL - 2016/01/13 34

Hit Finding Performance

Sim Hits from CMSSW Rec Hits from CMSSW

• Switch to single event with 500 tracks, only one eta bin
‣ select tracks without inefficiencies in CMSSW
‣ hit smearing done in our code when starting from Sim Hits

• Hit finding for 10 GeV muons looks very good
‣ 99.6% of the tracks have at least 9 found hits when starting from Sim Hits
‣ 93% of the tracks have at least 9 found hits (95% at least 6) when starting from Rec Hits

• Worse performance for low pT tracks, currently under investigation

Combinatorial Algorithm  
Best Hit Algorithm Combinatorial Algorithm  

Best Hit Algorithm

G. Cerati (UCSD) FNAL - 2016/01/13

Conclusions

• R&D project for tracking on Xeon Phi gives promising preliminary results
- large speedup both from vectorization and parallelization

• Main bottlenecks are identified
• Further improvements are being explored, many already implemented
• Code interfaced to CMS full simulation, geometry and material properties

- already good performance, especially for high pT tracks

• Next steps:
- improve performance using full simulation input, including collision events (with PU)
- complete fully vectorized/parallelized tracking chain: seeding+building+fitting
- consolidation/implementation of new ideas
- …
- explore other architectures (GPU already started)
- comparison with current reconstruction model
- porting and deployment in official reconstruction

35

