Landscape Program Requirements and

Architecture
Joe Boyd, Tanya Levshina, Kevin Retzke

Version History

\Version Date Author(s) Change Summary
1.1 03-21-2016 [Tanya Draft initial
Levshina, Joe [document
Boyd, Kevin
Retzke
1.2 05-11-2016 [Tanya Levshina|Version update d

based on Ruth
Pordes’ feedback.

1.3 05-13-2016 Tanya New revision

Levshina, Joe
Boyd, Kevin
Retzke

1. Overview

2. Purpose

3. BackGround

4. Scope

5. Objectives
6. Stakeholders

7. Customers
8. Requirements
8.1. General requirements:
8.2. Stakeholders requirements:
8.3. Customer requirements:
8.3.1. Operational and Service Management requirements:
9. Landscape Architecture
9.1. Architectural Diagram for User and Log Analytics Service for FIFE Experiments

9.2. Architectural Diagram for GRACC Service
9.3. Service and Site Availability Service
9.4. Program Execution Architecture
10. Appendix A: Justification for Open Source Software Selection
10.1. ELK in HEP
11. Appendix B: Landscape and Other SCD Projects

1. Overview

The Landscape program’s goal is to provide a comprehensive framework to monitor Grid
services health, resource utilization, jobs and data movement at HEP Cloud Facility.

2. Purpose

The purpose of this document is to
- Capture the requirements of experiments and projects, service providers, user support
and management to monitor, analyze, troubleshoot and audit our batch and data
handling infrastructure.
- Describe the architecture for the proposed solution.

3. BackGround

1. Why are we doing this program now?
During the last several years the experiments and management expressed their concern
and dissatisfaction with the state of monitoring of Grid jobs. One needed to be aware of
multiple services and login to a specific webpage to be able to understand the status and
usage of a particular service. All the monitoring pages look differently and one need to
be very familiar with the service in order to interpret the content of the page.
More and more experiments are starting to use common FIFE infrastructure and tools.
With addition of Public Clouds and increased usage of OSG resources we need to
provide a central place for experiments to be able to monitor the status of their jobs and
be able to troubleshoot the problems. The Landscape program is designed to do just
that.

2. What will happen if we do it later?
If we do not start to work on these services as soon as possible we will need to
drastically increase the efforts for user support.

3. What if we do not do it at all?

There is a chance that we will lose our customers who will try to find dedicated clusters
and give up HEP Cloud and OSG usage.

4. Who will benefit from this project?
FIFE experiments, SCD management, and HEP Cloud service providers.

5. Do the people who will benefit from it consider it the most important improvement that
can possibly be made at this time?
It would definitely be a big improvement for our customers. It makes them and the
service providers enabling their computing usage more efficient by having a in-depth
view of the system at all times. Especially, the program will help people responsible for
experiments’ off-line production.

4. Scope

The requirements are limited to those of the FIFE customers. The scope covers
- user jobs submitted to the HEP Cloud Facility,
- health monitoring and alarming of batch and data handling middleware,
- facilitating troubleshooting and analytics including resource consumption and utilization
efficiency.
The requirements and architecture will be used to guide the
- selection of mature, stable Open Source products,
- appropriate development, integration and operation of services,
- personnel processes and interactions for service and user support,
- testing and validation activities.

5. Objectives

The outcomes of this program are to deliver into production solutions that meet the
requirements using a modern, extensible, flexible, scalable design and implementation that is
easy to use and enhance as well as adapt and evolve to new needs, tools and capabilities.
The deliverables include:
- Framework into which diverse timed and structured widely distributed system
parameters and real-time probes (including user defined) can deliver their information.
- Scalable, robust, federated repository of the information gathered.
- Well specified program and user interfaces for input of and access to the information
- Easily configurable and very user friendly graphical interfaces, dashboards, presentation
interfaces for system and user selected collections of the information stored.
- Easy to use presentation options for information to be included in presentations and
papers.

- Alert and alarm capabilities based on analysis of the real-time information.
- Support for troubleshooting and system efficiency activities based on system (and user?)
specified interpretation of system and user selected parts of the information.

6. Stakeholders

We have identified the following groups as stakeholders for this program:
e Users Executive Committee (UEC) representing the users of our distributed computing
services and facilities.
e Scientific computing program (experiments and projects) leaders, liaisons, and
management
o Understand resource utilization by their users.
o Obtain graphical information in standard formats for effective communication to
collaborators, overseers and sponsors.
e Computing management and coordinators
o Plan for resource needs
o Understand science operations and workflows
o Prioritize and allocate resources (including people)
e Computing Service Owners
o Provision of resources for future needs
o ldentify users that are not using services efficiently and provide help.
e The Open Science Grid
Understand utilization of OSG resources
Report use of the distributed facility to funding agencies,
Meet MOU agreements with the LHC experiments by providing information to the
WLCG.
o Meet agreements with the NSF XD program by providing information to the
XSEDE accounting services.

7. Customers

The following groups will be using Landscape Program:

e Projects (Geant4, Noble R&D etc.) and experiments (NOVA, Mu2e, DUNE,
MicroBooNE,etc.) that are using the Grid and Cloud infrastructures to monitor and
report on the overall throughput and effectiveness of the use of their resource allocations
for simulation, data processing and analysis.

Users of any distributed resources at Fermilab will be able to monitor and debug in
real time the status of jobs submitted to the Grid, queues and transfer rates for their
data, current storage usage, efficiency and success rate of their jobs.

Grid and Cloud services support and operations staff (USDC, OPOS, GSO) will be
able to see and receive alerts on the overall status of the services, current HEP Cloud
utilization, availability and efficiency of OSG sites for FIFE experiments, status and
performance of data management services such as SAM and FTS.

SCD management will also use the service to monitor resource utilization trends and
understand provisioning needs.

The OSG (VO admins and users, Pls, sited administrators, OSG ET etc) will use the
service to monitor current sites usage, efficiency and success rate.

8. Requirements

These are the current requirements collected during our requirements gathering stage. It is,
clearly, possible that Landscape dashboards usage by numerous users will generate new
requirements and these will be folded into the planning of annual meetings.

8.1. General requirements:

Provide services that allow stakeholders and customers to monitor jobs submitted on
HEP Cloud and all other grid and cloud resources at Fermilab, observe data transfers,
and troubleshoot Grid and Cloud related services.

Build extendable, scalable and sustainable services.

Minimize development by using well accepted open-source software.

Provide a pluggable architecture where the software modules can be easily replaced.
Initial focus on incorporating new data sources and new dashboards.

Allow rapid development and iteration of tailored views for each target audience.
Preserve historical data accumulated before start of the program.

Preserve, where possible, existing probes and agents collecting data.

Provide means to extract data and upload it to any future service.

Provide reasonable replication of existing data in order to have backup in case of data
lost.

Minimize manual work to add new experiments and users.

Services should be easily reinstalled and configuration management tools should be
used to facilitate services installation.

Provide means to add additional metrics and analytics.

Provide means to modify/correct historical information.

8.2. Stakeholders requirements:

e Monitor in real time (per user/experiment)

O

o

O

O

o

O

Submission rate, idle queue

Utilization, efficiency of HEP Cloud Resources (FNAL HTCondor and AWS)
Utilization of the OSG sites

Data transfer rate and size for various services including dCache, Enstore,
gridF TP, xrootd, hadoop etc

dCache queue, SAM and FTS statuses

dCache tape usage

Current priority and allocation of resources

e Have means to generate monthly/yearly plots based on historical information (per
experiment/role)

o

o O 0O 0O O O O ©O

O

Wall Hours, CPU spent on jobs per facility

of User Jobs

Efficiency and Success Rate

Wall Hours, CPU spent on glidein pilots on GPGrid
Pilot job efficiency

Data transfer rate and size

Storage Usage

Tape usage and transfer size

Number of users using facility

Charges accumulated by using Public Clouds

e Collaborate with other groups that are involved development of monitoring and
accounting for Grid infrastructures, including OSG, XSEDE and WLCG:

o

O

Share toolkits wherever possible
Outreach and communicate to CERN, OSG, XSEDE and other relevant
organizations.

8.3. Customer requirements:

Scientific User (project, experiment etc):
e Have means to requests dashboards tailored for experiments.
e Monitor in real time:

o

o O O O O O

Status of jobs

Availability of resources

Requested vs utilized cpu, memory, duration
Pre-emption rate on OSG sites

dCache, FTS, SAM queues and status
Transfer rates

dCache Pool usage

Ability to troubleshoot:
o The reasons for jobs being idle
o The reasons for jobs being on hold
Have means to generate monthly/yearly plots based on historical information (per
experiment/role/user) (same as for stakeholders)
Access to the running job detail:
o Where it is running (site, host)
o What resources it is using

Service Administrators:

Monitor in real time:
o HepCloud Resource usage
o Status of HEP Cloud services (condor, Factory, Frontend, jobsub)
o Priority and efficiency
o Public Cloud usage, charges and spot prices

Other Service Providers:

8.3.1. Operational and Service Management requirements:

Services availability is 95% for Job Monitoring and Accounting services. Service and Site
Availability Service should be available 99.9%.

Services support is limited during working hours (5 days 9 by 5)

Most of the Landscape views will be accessible for anyone with a Services login. Single
Sign On will be implemented.

Some of the monitoring dashboards will be protected and be available for a limited set of
people (e.g access to pricing information for Public Cloud).

Operation should perform data replication/backup. Data should be archived and be
possible to restore data from the archive.

Software needs to be upgraded according to release schedule.

Some operational work needs to be performed on demand, e.g experiment name is
changed.

Services availability should be monitored by the existing alarm service (e.g check_mk)
and alarm should be sent to operation team in case of service unavailability. The
appropriate checks need to activated to monitor disk, cpu and memory usage on the
machine where services are running.

9. Landscape Architecture

We distinguish several layers in the program architecture: Data Collection services, NoSQL
databases for data storage, and visualization platforms with support for numerous data
sources and authorization methods. Components used in each layer will be replaceable,
encapsulated and independent.

The high level architecture diagram is presented on the figure below:

B Landscape

DATA VISUALIZATION

Accounting Maonitoring Analytics Alarming
.
I i i r

DATA STORE

W e S, Magios

SENRN DATA SOURCE

1 1 1 1 1 1 T {

9.0.1 Data Collection Layer

Data collection probes will be represented by numerous custom scripts and third party agents
(e.g Logstash client) capable of collecting and forwarding data to the Data Store layers. We will
reuse with minimal modification the probes that have been developed during previous years.
Some of the existing probes are listed below:

Gratia probes (include collection of job records, data transfers, storage usage, etc)
Generic HTCondor probe

SAM and FTS probes

dCache queue probe

Blue arc locks probe

Probes will be running on remote nodes, collect information and forward it to Data Store. New
probes could be added at anytime.

9.0.2 Data Store Layer

We propose to use NoSQL Open Source products, such as Graphite and Elasticsearch, as a
data store. Both tools have a query facility that can be optimized for time series data. Graphite is
well suited to deal with a large number of unique, independently distributed statistics at discrete,
bucketed time intervals. The stats should be conceptually hierarchical: they have either
parent-child or sibling relationships with each other. It contains one or more archives, each with

8

a specific data resolution and retention policy for long-term retention of historical data. So, the
data we are collecting from HTCondor such as number of running, idle, held jobs, memory and
cpu usage per job, transfer rate to dcache, number of files declared at SAM or queued at FTS’s
dropbox is well suited for storing in Graphite.

Elasticsearch, an Open Source product widely used by various companies as well as HEP
groups (UChicago, CERN, CMS DAQ, etc), is used for the stats that have many to many
relationships to each other, the number of categories, and relationships among categories, can't
be determined in advance. We will use it to collect information from various logs , such as
HTCondor event log, ifdh log, SAM and FTS logs. We are also planning to store all Gratia probe
records in Elasticsearch.

9.0.3 Data Visualization Layer

Grafana and Kibana has been chosen to serve as Data Visualisation Services for the
Landscape Program. The main focus for Grafana is time series and graph panels. Grafana is
easily extendable and provides a variety of panels with rich visualization options. There is built
in support for many of the most popular time series data sources. It is more suitable for real time
monitoring and provides a reasonable response time. Kibana will be used as a log analytics
dashboard. Kibana enables us to analyse the collected data and see trends.

9.1. Architectural Diagram for User and Log Analytics Service for
FIFE Experiments

FIFEMon provides views of the collected data customized for a particular audience. This may
be the data related to an individual user’s activities, the data related to the activities of all the
users on an individual experiment, or the data related to an individual service for example. It is
very configurable drawing data from many sources to produce a holistic view of the status of the
system.

T Y\\
HTIConddr
Fifebatch

GPGrid

CMS Tier 1
CMSLPC
HEP Cloud

SAM
FTS
_ dCache
BlueArc
T

Major Components:

Logstash & i
custom scripts

'l i} —> query services,

typically every five
minutes

Raw
Documents

Graphlte

Elastlcsearch

4

e Custom Probes
o Time-series data related to condor stats, AWS usage, status of data

management services, etc.

Deployed on a host that has access to a services producing data, e.g
HTCondor schedd, dCache InfoProvider, AWS.

o Filtered logs from various services sending data to Elasticsearch cluster via

Logstash clients.
Deployed on a host where service logs are available, eg. HTCondor head
node with event logs, FTS and SAM station nodes.
e Open Source NOSQL repository

o Graphite. Deployed on designated server with enough cores, memory and fast

disk (preferably SSD).
o Elasticsearch.

Deployed on several multicore nodes with 64GB RAM and fast disks.
SSDs is preferable for indexing-heavy nodes.

e Open Source Visualization Dashboards

o Grafana dashboards for time-series display.
Hardware requirements vary based on the quantity of nodes being

Grafana

monitored, amount of instances monitored and the frequency of

monitoring. It is usually deployed on the same node as Graphite.

o Kibana dashboard for analytic and creation of complicated queries and plot them
as bar charts, line and scatter plots, pie charts, histograms.

No outstanding hardware requirements.

10

9.2. Architectural Diagram for GRACC Service

GRACC (GRid ACcounting Collector) Service is a collection of components for implementing
resource usage accounting. It is a replacement of the Gratia accounting system. One of the
goals is to replace a monolithic, “in-house” developed service with independent, mostly widely
used open source components. The other goal is provide a flexible repository schema evolution
for new data sources including memory consumption, network usage and many others. The
service should be designed with long term maintenance in mind.

Gratia Collector

oM
: [GRACCD<

Logstash: 2
Convert

and enrich
records.

RabbitMQ

Grafana

Elasticsearch !
4 Summarizer ,
g@ 7Y (Logstash?)

Major Components:
e Collector

o "Gratia-Compatible Collector" that acts as a transitional interface between the
obsolete Gratia accounting collector and probes and the new GRACC accounting
system.

o It listens for bundles of records (as would be sent via replication from a Gratia
collector or from a Gratia probe) on HTTP, processes the bundle into individual
usage records, and sends those to RabbitMQ or another AMQP 0.9.1 broker.

e AMPQ Service

o RabbitMQ, open source broker that supports HTTP, STOMP, AMQP 1.0 and
others, enables software applications to connect and scale. Applications can
connect to each other, as components of a larger application, or to user devices
and data. Messaging is asynchronous, decoupling applications by separating
sending and receiving data.

e Probes:

11

https://sourceforge.net/projects/gratia/

o Custom Gratia Probes that currently exists and will not be changed
o Additional Probes that could be developed for collecting Network, Condor Events
and other information
e Replay daemons:
o Daemons that listen and respond to requests for replays on a AMQP queue.
e Open Source Visualization Dashboards (GratiaWeb Replacement)
m Grafana for time-series plots
m Kibana for complicated queries
e Open Source NOSQL repository (MySQL Replacement)
o Elasticsearch

9.3. Service and Site Availability Service

Check_MK is an open source extension to the Nagios monitoring system that allows creating
rule-based configuration using Python. It comes with a set of system checks, a mod_python and
JavaScript based web user interface, and a module that allows fast access to the Nagios core. It
is widely used in CD and will not be described here. We will continue development of check_mk
agents to monitor FIFEMon infrastructure and will configure them to report to existing check_mk
instance run by GCO.

9.4. Program Execution Architecture

Given the goals and the proposed technical architecture we propose a multi-project program
execution architecture. Initially this consists of several projects and will be implemented in
phases. Currently we have identified four projects that aim to address the requirements we have
collected so far.
1. User and Log Analytics Service for FIFE (FIFEMON & FIFEMON-Analytics):
a. Allows users and support groups to monitor jobs, data transfers , and resource
usage on HEP Cloud.
b. Collects various logs, allows to do monitoring, search, analysis, and visualization
in real time.
2. Accounting (GRACC): Provides probes, repositories, and dashboard for historical
information about user jobs, data transfers, storage usage.
3. Service and Site Availability Service: Collects status of the various services and Grid
sites, allows to generate alarms and handle troubleshooting responses.

12

https://en.wikipedia.org/wiki/Nagios
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Mod_python
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/User_interface

10. Appendix A: Justification for Open Source
Software Selection

“We were not pioneers ourselves, but we journeyed over old trails that were new to us, and with
hearts open. Who shall distinguish?”
J. Monroe Thorington

We are proposing to move from mostly in-house developed software to the 21st century open
source products that have been proven to be flexible and scalable enough to be used widely by
many organizations and communities. In HEP these tools are also becoming very popular and
are running in production on multiple sites. Some examples are below.

10.1. ELK in HEP

1.

ATLAS Analytics platform (running in CloudLab w/ indices backed up to MWT2).
a. Recent presentation could be found here
b. Installation:

m 3B docs in 1084 indices spread over 9182 shards. Data size (single copy
of it) ~3TB. Keep at least 2 copies. Growing ~2GB a day. They are
indexing much more but some large indices from Rucio are deleted after
10 days. Updates at 3kHz (max 10kHz seen).

WLCG perfSONAR dashboard (global) and regional federation dashboard (MWT2)
UChicago: Early The ES instance at UC uses 4 Dell R410 nodes with 3TB of storage on
each and with most indices set to replicate data to all the data nodes. The master and
client nodes are VMs. With this setup we're pretty overprovisioned in regards to cpu
(load is usually under 4 with 12cores/24 w hyperthreading). The data nodes have 48GB
of memory which is sufficient (ES should use no more than 32GB RAM per instance.
The rest is used by the OS for caching.. ES has 12TB raw at Chicago (with 2x
replication).
CERN

o Elasticsearch vs Oracle evaluation

o Used for Messaging service to monitor the status of their services. At the

moment, there are more than two billion documents.

o Will expand the usage of Elasticsearch to the three following areas:

m Data transfer movements between the sites

m Job processing

m Status of the sites and services

dCache (ELK)
Tier-2 site for the ALICE collaboration at LHC (the Torino INFN CC)_is using ELK
CMS DAQ

13

http://bit.ly/1L5XDGH
http://atlas-kibana.mwt2.org:5601/app/kibana#/dashboard/pS-MWT2
https://docs.google.com/presentation/d/1DMKXF3g5r_PFNVupaIhSo8w74_E8oL_zAhzYKe3JPus/edit#slide=id.p
https://www.elastic.co/blog/grid-monitoring-at-cern-with-elastic
https://www.elastic.co/blog/grid-monitoring-at-cern-with-elastic
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032048/pdf
http://iopscience.iop.org/article/10.1088/1742-6596/513/3/032048/pdf
https://indico.cern.ch/event/304944/session/4/contribution/45/attachments/578922/797134/elk-chep2015.pdf
http://inspirehep.net/record/1372967
http://inspirehep.net/record/1372967
http://inspirehep.net/record/1414058
http://inspirehep.net/record/1414058

o CMS has implemented a monitoring system for post-long shutdown 1 that
complements the redesigned File-based Filter Farm and takes advantage of
elasticsearch. It is able to provide a quasi-realtime full-detail insight into event
processing information, using same mechanisms to inspect live run information
as well as run history.

e OSG Connect analytics

11. Appendix B: Landscape and Other SCD Projects

There are numerous services that are developed or adapted by various teams in the Scientific
Computing Division. Among these services are dCache, Enstore, SAM, FTS, ELog, IFBeam and
many others. Some of these services are already reporting information relevant to FIFE off-line
processing to FIFEMon and Gratia (GRACC). The access to this data via Landscape provides
many benefits for stakeholders, namely access to just one service with easy navigation between
dashboards, possibility to correlate data, and similar look and feel. There are other services
that are still under development, such as POMS (Production Operation Management Service)
and CI (Continuing Integration Service), that could benefit significantly by being incorporated
into Landscape framework.

14

http://bit.ly/1oZ1qvy

