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The goal of this study is utilize recurrent neural networks (RNNs) to label simulated liquid argon                
detector signals generated with LArSoft. The simulated signals represent the electrical pulses received             
by the three wire sets in the detector as sub atomic particles intersect the wires . Within an event                   
window, a single wire will return 9600 sequential measurements. Where a particle intersects a wire               
corresponds to when the intersection pulses occur in the sequence of measurements. In general, these               
intersection events can produce electrical signals which are easily distinguishable from the            
background electrical measurements. However, as these events span several timesteps, the true            
beginning and end of the particle intersection can be obscured by the background noise. Also, smaller,                
less powerful intersections can be completely obscured by the pattern of background pulses. Given              
the temporal nature of the wire measurements, the problem of pulse classification is a natural fit for                 
RNNs.  
 
Through the experiments in this paper, we will strive to find an effective combination of recurrent                
model structure and data preparation which will be able to label the simulated wire signals accurately. 
 
Keras 
Several open-source neural network libraries are currently available. Keras (Chollet,2015) was chosen            
to run the experiments in this paper for the following reasons: 
 

● Support for standard neural network structures and tuning parameters, including several           
flavors of RNNs. 

● Dependencies are easily supported by current lab software. 
● Runs on top of Theano or TensorFlow and can be accelerated with GPUs. 
● Adequate online documentation available for starting basic structures. 
● Simple, expressive Python syntax makes it easy to implement different models and present             

code that is easy to follow.  
● As of this writing, the library is actively supported by the developer and an active online                

community. 
 
Throughout this paper, sample Python code utilizing Keras is presented to describe RNN models. The               
actual experiment code utilized a YAML file to set experiment and model parameters. The RNN               
models were then constructed from these settings from a generic model generator. The code              
presented in this paper are exact hardcoded translations of the generated models and would produce               
identical results.  
 
At the end of this document, additional code is presented to round out the examples should the reader                  
wish to experiment with Keras on their own (Appendix B). Also included is a brief description of the                  
common model parameters used in the experiments, but whose choice was not a focus of this paper                 
(Appendix A). Please note the line numbers in the code are for identification only and are not part of                   
Python or Keras.  The original experiment code and setting files for this paper can be found at: 

https://github.com/roberto0179/AnalysisWork/tree/master/rnn_experiments 
 

Glossary of Machine Learning Terms 

https://github.com/roberto0179/AnalysisWork/tree/master/rnn_experiments


Several accepted terms and formulas for evaluating the performance of machine learning models             
(Fawcett, 2005) are used throughout this paper. How these terms are defined and calculated are               
outlined below: 
 

● Signal vs Noise: used to describe the data in a binary classification problem. Signal is               
considered the data point of interest that is to be separated or distinguished from the               
background data, or noise. Signal is commonly labeled with a ‘1’ and noise labeled with a ‘0’. In                  
our simulated wire data, the electrical pulses marking particle interaction with the wire are              
sigal, all other electrical pulses resulting from other sources are noise. 

● True Positive (TP):​ the number of signal samples correctly identified as signal by the classifier. 
● True Negative (TN):​ the number of noise samples correctly identified as noise by the classifier. 
● False Positive (FP): ​the number of noise samples misclassified as signal. 
● False Negative (FN):​ the number of signal samples misclassified as noise. 
● Recall or True Positive Rate (TPR)​ = TP / ( TP + FN ) 
● Specificity or True Negative Rate (TNR)​ = TN / ( TN + FP) 
● Precision​ = TP / ( TP + FP ) 
● Accuracy​ = ( TP + TN ) / ( TP + TN + FP + FN ) 
● F1 Score = 2 * ( Precision * Recall ) / ( Precision + Recall) = 2TP / ( 2TP + FP + FN ); F1 Score is                            

the harmonic mean of precision and recall. 
● Area Under ROC Curve (AUC): ​The Receiver Operating Characteristic is a plot of the              

performance of a binary classifier as the discrimination threshold is varied. In other words, a               
plot of the True Positive Rate versus the False Positive Rate. AUC is the area under this curve.                  
Many classification metrics assume a 0.5 threshold for classification. AUC provides a measure             
of how a classifier performs over the entire threshold range. 

 
Description of the Data 
Our testing will consider a binary classification, where we will attempt to distinguish particle track               
signals from background noise in the wire sequence. 
 
The simulated data represent the electrical pulses received by the three wire sets in the detector. Two                 
of the wire sets (U and V) consist of 2400 wires. The third set Y, consists of 3456 wires. Each wire will                      
record 9600 pulses in a single event window. This means a single simulated event window will consist                 
of 8256 continuous sequences totalling just over 79 million electrical pulses.  
 
Three separate, but related sets of electrical data were extracted for each event window. The first                
turned off the simulated background sources, isolating just the particle intersection signals for each              
wire. This served to build our labeling set, and these pulses were converted to 0 and 1 to represent                   
background and signal respectively.  
 
The second set laid simulated frequency noise on top of the intersection signals. The third set                
incorporated simulated white noise on top of the intersection signals. Separating the frequency and              
white noise doubled the sequences generated for each event window. Though each set is derived the                
from the same target set. 
 
Initially, representing the electrical pulses as deltas was considered, where the value at each timestep               
represented the change from the previous signal. However it was decided using deviation from the               
median of the sequence would provide better overall context for each signal - allowing a smaller                
segment of wire to retain its relationship to the values of the parent wire. Also, when utilizing                 



bidirectional networks there would be no need to recalculate the deltas for the backward leg of the                 
network. 
 
For our initial dataset, we extracted the wire data from five simulated events from MicroBooNE . The                 
data from four of these events was reserved for the training and validation of RNN models. The fifth                  
set of data was used exclusively for testing. Thus making 66048 thousand whole wire sequences               
available for training and validation, and 16512 whole wire sequences available for testing.  
 
Feedforward Networks 
To explain how recurrent neural networks work, we will first provide a very general description of                
feedforward network for contrast (Graves, 2008, 12-18). In this simple example we have a network with                
3 input nodes, a hidden layer with 4 nodes and an output layer with two nodes or classes, in other                    
words a binary classifier (image from Wikipedia, 2016). 

 
Between two layers, all nodes are interconnected with        
adaptive numeric weights which are initially set to        
random values. The input nodes are the values, or         
features, that describe a single sample. The hidden        
nodes contain sigmoid activation functions that take       
the sum of weighted inputs to that neuron and         
determine whether the neuron “fires” or not. The        
output neurons represent the classes. A particular       
sample will be represented by a value of 1 in the neuron            
that identifies its class and a value of 0 in the other            
output neurons.  
 
In training such a network, a single sample,        
represented by 3 features, is passed into the network.         
These values are multiplied by the weights as they pass          
to the hidden layer. At each neuron in the hidden layer,           
the weighted values are summed and the activation        
function applied. If the neuron fires a 1 passes out of           
the neuron to each of the output nodes, where a weight is applied along the connecting edge. At each                   
output node the weighted inputs are summed and compared to the correct output for the sample.  
 
At this point the output is likely different from what is should be, and this is because the weights have                    
random values. This is where the backpropagation algorithm is applied. The difference between the              
values at the output nodes and what they should be is the error for each node. These error values are                    
sent back to hidden nodes, with the same edge weights applied. At the hidden nodes the error is                  
calculated, and if there are additional hidden layers, these errors are sent back through the network                
until the error for each node (except the input nodes) is calculated. As a final step, the weights going                   
into each node are adjusted slightly so that the error should decrease. Whether a weight should                
increase or decrease is determined by a gradient descent algorithm.  
 
The above steps constitute a single round of training for a single sample. As this is repeated with                  
additional samples, the desired result is that the weights achieve an optimal value so that error for all                  
samples is minimized. Each training sample that is passed into the network acts on the network                
independently, and weights are adjusted specifically to the error produced by that sample. There is no                



implied relationship between features beyond their shared relationship to a single sample. If we              
identify the features in this example as A,B and C, it is important that for each sample, feature A enter                    
the same input neurons as feature A for the other samples. However, whether the input neurons are                 
ordered A-B-C or C-A-B in the model would have no impact on the resulting training.  
 
How RNNs work 
On the other hand sequential information, such as words in a sentence or signals in an electrical                 
waveform, derive a significant portion of their meaning from their context. The individual discernible              
segments in a sequence have a temporal relationship with each other. What comes before, and               
sometimes what comes after, a particular point in a sequence helps to identify that point. C follows B                  
follows A has meaning. Recurrent neural networks (Graves, 2008, 18-21) are ideally suited to sequential               
information in that they allow steps in a sequence to influence the evaluation of succeeding steps.  
 
In an RNN the same set of calculations are performed on each and every element of a sequence,                  
however the output at each timestep in the sequence is dependent on a portion of the prior calculation                  
from the previous timestep .  In general, a recurrent network  can be visualized as follows: 

 
(from Nature through Britz) 

 
In the condensed model at left, ​x is the input sequence and o is the output. ​U,V and ​W are the                     
parameters or weights. ​S is the hidden state or hidden layers of the network. All of this is fairly                   
analogous to our previous example of the feedforward network except for one important term: the ​W                
parameter that loops back to hidden layer. To visualize what the ​W ​term is doing here we can expand                   
the model, or unfold it. In the diagram on the right, ​x ​represents each of timesteps in the sequence.                   
Each timestep in the sequence produces an output ​o​. After the hidden state ​s is calculated for the first                   
timestep, a weighted value ​W becomes part of the calculations for the hidden state of the next time                  
step, and so on.  
 
A slightly modified backpropagation algorithm, called backpropagation through time, is applied to the             
unfolded network. Similar to the feedforward network, the error for each node at each hidden state is                 
propagated back to the very first element in the sequence. However, the major difference from the                
feedforward network is that the gradient updates are averaged and applied equally to the              
corresponding weights at each timestep. Remember, each hidden state in the sequence, with the all               
the weights, biases and activation functions, is identical for each element in the sequence. So are the                 
U,V ​and ​W​ parameters. This process is repeated for each new training sequence sample. 
 
Simple RNN 



In our first experiment we will attempt to train with and classify small segments of our wire sequence.                  
We will slice the 9600 wires into sequences only 100 timesteps long and train on a two layer deep RNN.                    
This model will return a classification on each of the 100 timesteps in the testing sequences. 

 
The Keras implementation for this model: 
 

01​  model = Sequential() 
02​  model.add(SimpleRNN(16, input_shape=(100,1), return_sequences=True,  

  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2)) 

03​  model.add(SimpleRNN(16, return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2)) 

04​  model.add(TimeDistributed(Dense(2))) 
05​  model.add(Activation(‘softmax’)) 
06​  model.compile(loss=’binary_crossentropy’, optimizer=Nadam()) 

 
So that the reader can become familiar with how Keras implements a model and its parameters, here is                  
a brief description of each line of code: 
 

1. Instantiate model. 
2. Add a 16 node, recurrent neural network layer. The first layer requires a description of the                

input sequence, in this case it’s a sequence 100 timesteps long where each timestep consists of                
a single attribute. Since we want every output from the sequence and not just the last one,                 
return_sequence is set to True. The activation can be any number of typical functions such as                
tanh or relu. In this case we are using softsign. Dropout helps to keep the network from                 
overfitting to the training data. Here we are applying dropout to the input weights(W) and               
recurrent weights(U). 

3. Here we add a second RNN layer, however the input description is not required. 
4. This is our output layer with 2 nodes, one for each class. The TimeDistributed wrapper allows                

us to return the output at each timestep. Otherwise just the output from the last timestep                
would be returned. 



5. This adds the activation function softmax to the output layer. Softmax is a typical activation for                
binary classification. 

6. We compile our model to ready it for use. Our loss function is binary cross entropy, Keras’                 
version of logistic loss. The optimizer is applied to our gradient descent algorithm to assist in                
updating weights during back propagation. Nadam is a version of RMSprop (which adapts             
learning rates during training and is commonly used in training recurrent nets) that adds              
Nesterov’s Momentum. 

 
After training for just 10 epochs we achieve the following overall classification performance for our               
model on the frequency noise simulation for the U wire set in our test dataset: 

 
 
True Positive:       955897 

False Positive:     1896306 

True Negative:     19623173 

False Negative:      564624 

Recall (TPR):        0.6287 

Specificity (TNR):   0.9119 

Precision:           0.3351 

Accuracy:            0.8932 

F1 Score:            0.4372 

AUC:                 0.8547 

 
 
 

Our F1 score throughout the sequence is unimpressive, though fairly consistent after an initial drop.               
Since the particle intersection events on a wire can be mapped to a location on the wire based on its                    
occurrence in the time sequence, it is fairly straightforward to visualize the performance of our trained                
model by mapping the predictions on a grid of wires and timesteps. We can look at a small window                   
from this grid taken from one of the frequency noise wire sets in our test data. It is important to note                     
that the sequences start on the left and end on the right: 
 

 



Visually, we can see the main tracks of intersection where particles cross the wire plane. Given the                 
background in this test sample is comprised of frequency noise, it is easy to imagine that the network                  
is mistaking the false structures of the frequency noise (red lines) as particle interaction. We can also                 
see that while the model is generally finding the main structures of the particle intersection signals, it                 
is missing the large parts of these structures, often on the left or beginning of these structures as it                   
trains left to right. The results looks even more chaotic on a single section of wire: 

 
How LSTMs work 
Training an RNN can suffer from the same problem as a deep multilayer network in that as error                  
calculations travel back through multiple nodes, most of the correction occurs closer to the beginning               
of the back propagation, or toward the end of the sequence, and it becomes harder to adjust weights                  
earlier in the unfolded sequence. This is termed the vanishing gradient problem. (LISA Lab, 2010) As                
the sequences in an RNN become longer, earlier timesteps have less influence on correcting the               
gradients in the hidden state. That means for long sequences, the most recent timesteps greatly               
influence training, whereas earlier timesteps affect training very little or none at all. If we view the                 
influence of the value passed along the ​W edge in the RNN illustration as a kind of memory, then the                    
RNN can only remember a few timesteps prior to the current step in the sequence. 
 
Long Short Term Memory networks, or LSTM, (Graves, 2008, 31-38) are a modification of RNNs that                
allow the influence of timesteps to be passed further along a sequence than is possible with a simple                  
RNN. This is accomplished through the addition of a separate cell state that is passed to each timestep.                  
At each timestep this cell state can be altered or allowed to pass unchanged through the current                 
timestep to the next one. The cell state can also be fed into the current hidden state calculations to                   
provide its influence. In this way the value of hidden states occurring early in a sequence can find their                   
way all the way through to last element in a sequence.  
 
 



 

 
(Olah) 

 
To explain this structure as simply as possible (LISA Lab, 2010) - Each rectangular area represents the                 
processing of a single timestep in the sequence. The bottom horizontal path is similar to the hidden                 
state portion of a regular RNN. The top horizontal path is the cell state which makes LSTMs different.                  
Between these two paths there several sigmoids which act as gates through which the hidden state can                 
affect the cell state. Toward the end of this structure the cell state provides its influence on the                  
hidden state and the output for the timestep. Both the hidden state and cell state are then passed to                   
the next timestep. It is easy to see how the addition of the cell state sidesteps the vanishing gradient                   
problem by providing a potentially uncluttered path from timestep to timestep. In this way, the LSTM                
is able to ‘remember’ over a much longer sequence than a regular RNN.  
 
LSTM Model 
We can change our earlier RNN model to an LSTM model in Keras simply by changing the two hidden                   
layer instantiations: 
 

01​  model = Sequential() 
02​  model.add(​LSTM​(16, input_shape=(100,1), return_sequences=True,  

  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2)) 

03​  model.add(​LSTM​(16, return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2)) 

04​  model.add(TimeDistributed(Dense(2))) 
05​  model.add(Activation(‘softmax’)) 
06​  model.compile(loss=’binary_crossentropy’, optimizer=Nadam()) 

 
We left the other parameters unchanged and again trained for 10 epochs and achieved the following: 
 
 

 
 
True Positive:         727361 

False Positive:        146812 

True Negative:       21372667 



False Negative:        793160 

Recall (TPR):          0.4784 

Specificity (TNR):     0.9932 

Precision:             0.8321 

Accuracy:              0.9592 

F1 Score:              0.6075 

AUC:                   0.8760 

 
Aside from recall, all of our metrics have improved over the regular RNN. Here there is a significant                  
improvement in the false positives. The network now appears to be learning to exclude the false                
structures of the frequency noise (at some expense to the true positive rate). The results from the                 
LSTM network indicate that even in a sequence as short as 100 timesteps, a regular RNN is at a                   
disadvantage in learning important structures in the sequence.  
 
Statefulness 
In the two previous experiments there is enough misclassification occurring at the start of the               
sequences that the our slicing boundaries are clearly visible in the visualizations of the results. Why is                 
easy to understand if we reexamine our diagram of the unrolled RNN. 

 
At the beginning of the sequence the ​W vector is empty. There is             
nothing being passed to the first timestep, and there is nothing           
the first timestep can learn about its place within the sequence. In            
fact, it can take several timesteps for the sequence to learn           
enough structure about itself that the hidden state becomes useful          
to the subsequent timesteps. A recurrent network missing this         
initial hidden state is described as being stateless (Brownlee, 2016). 
 

Seeing that our test sequences are actually sliced from a much longer sequence, we know that these                 
initial timesteps do exist within the context of previous data. It would be useful that when a new                  
sequence enters the network, the hidden state (and cell state of an LSTM) from the end of the previous                   
sequence could be inserted into the beginning of the next sequence. Thus rendering the network               
stateful for the first timestep of the new sequence: 



 
Stateful LSTM 
Keras provides an easy mechanism to accomplish this. By setting stateful = True in each of the hidden                  
LSTM layers in lines 2 and 3, we direct the recurrent network to initiate a new batch with states from                    
the last batch.  
 

01​  model = Sequential() 
02​  model.add(LSTM(16, input_shape=(100,1), return_sequences=True,  

  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,  

  ​stateful=True​)) 
03​  model.add(LSTM(16, return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2, ​stateful=True​)) 
04​  model.add(TimeDistributed(Dense(2))) 
05​  model.add(Activation(‘softmax’)) 
06​  model.compile(loss=’binary_crossentropy’, optimizer=Nadam()) 

 
 
True Positive:         825181 

False Positive:        264184 

True Negative:       21255295 

False Negative:        695340 

Recall (TPR):          0.5427 

Specificity (TNR):     0.9877 

Precision:             0.7575 

Accuracy:              0.9584 

F1 Score:              0.6324 

AUC:                   0.8864 



 
Adding statefulness to our model has not really improved the overall metrics. However the              
classification performance of the initial timesteps is much improved and is now on par with the rest of                  
the sequence. The visualization confirms that the passing of hidden states from sequence to sequence               
is having a positive effect on training, as the sequence slices that were visible in previous tests have                  
now disappeared. 
 
Bidirectional Networks 
The three networks tested thus far have one thing in common in regards to how training and testing                  
are handled. All of the sequences have a beginning and end, and these models process the timesteps                 
from beginning to end. If memory in an RNN is passed to subsequent timesteps, that means the                 
sequence after a specific timestep can have no bearing on its training or testing. Only the hidden                 
states from the previous timesteps are used in calculation. 
 
This limitation can be visualized in the three previous models by where the preponderance of false                
negatives are occurring, at the left or beginning of true positive segments. As the model encounters a                 
distinct particle track, it is not correctly identifying this segment until it has processed a significant                
portion of it.  The models appear to be more effective in latter half of these segments.  
 
That the models are having difficulty in these specific pulses is not surprising. The electrical values in                 
these sections are easily hidden within the range of background noise. Yet this is also true for the back                   
end of these segments, and classification performance in these areas does not seem as weak. It can be                  
hypothesized that once the model has correctly placed itself within one of these segments, it handles                
these more confusing sections differently. If the model could ‘look ahead’ to the pulses following a                
timestep, it may process these early particle segments more effectively. 
 
Bidirectional recurrent networks (Graves, Jaitly, Mohamed, 2013) attempt to tackle this problem by             
including layers that process a sequence backwards. Essentially there are two sub-networks, each one              
acting as a typical recurrent network, except that one processes the timesteps in the normal forward                
manner, and the other processes the same sequence in reverse. The outputs from both of these                
subnetworks is then merged so that each timestep is influenced by the forward processing and the                
backward processing. The processing at the merge layer is handled timestep by timestep where any               
number of functions can be applied. For example, summing the forward and backward outputs, or               
taking the maximum value. 



 

 
Bidirectional Model in Keras 
Keras provides a shorthand wrapper for bidirectional networks that builds this structure under the              
hood, however we are not going to use this and instead program it in the longer form so the basic                    
structure of bidirectional network can be more easily visible: 
 

01​  left = Sequential() 
02​  left.add(LSTM(16, input_shape=(100,1), return_sequences=True,  

  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,  

  stateful=True)) 

03​  left.add(LSTM(16, return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2, stateful=True)) 

04​  right = Sequential() 
05​  right.add(LSTM(16, input_shape=(100,1), return_sequences=True,  

  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,  

  ​stateful=False, go_backwards=True​)) 
06​  right.add(LSTM(16, return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2, ​stateful=False,    

              go_backwards=True​)) 
07​  model = Sequential() 
08​  model.add(​Merge([left,right], mode = ‘sum’​)) 
09​  model.add(TimeDistributed(Dense(2))) 



10​  model.add(Activation(‘softmax’)) 
11​  model.compile(loss=’binary_crossentropy’, optimizer=Nadam()) 

 
There are several special things to note about this model: 
 

1. This instantiates the forward processing portion as its own model.  
2. This line and the next are the two hidden layers of the forward processing portion of the                 

model. In all respects they are identical to the hidden layers of the stateful LSTM model                
presented earlier.  This layer has the input shape which describes the input data. 

3. The second hidden layer of the forward processing model. 
4. This instantiates the backward processing model. At this moment it is an entirely separate              

model from the forward processing model.  
5. This layer requires an input shape since it is the first hidden layer of a model. The attribute                  

go_backwards=True instructs the model to process the input sequence backwards. This           
makes it unnecessary for us to prepare a separate set of training data with the timesteps                
reversed. You will also notice that stateful=False in the the backwards processing. Why will be               
explained a little later. 

6. The second hidden layer of the backward processing model. 
7. This instantiates the main model. 
8. The layer merges the results from the forward and backward LSTMs into a single layer. The                

‘left’ and ‘right’ models are passed in as arguments, along with the setting mode=sum. This               
directs that the outputs from the two models are summed together. 

9. This is the output layer as before, which returns a classification for each timestep 
10. The activation for the output layer. 
11. Compile the model for use. 

 
 
True Positive:        1174592 

False Positive:        529919 

True Negative:       20989560 

False Negative:        345929 

Recall (TPR):          0.7725 

Specificity (TNR):     0.9754 

Precision:             0.6891 

Accuracy:              0.9620 

F1 Score:              0.7284 

AUC:                   0.9571 

 



 
The metrics with this model have improved. In the visual we can see marked improvement in                
recognizing the beginning of particle tracks on a sequence, though not everywhere. In fact              
performance in this particular area is worse at the end (or right side) of the sequence slices. This is                   
apparent in the F1 score over the timesteps in the sequences and in our wire plane visual, where the                   
divisions between sequences are once again visible.  
 
This model is bidirectional over the 100 timestep sequences only, not over the entire wirelength. The                
reason for this is that this model processes the samples one sequence at a time and has to combine the                    
forward and backward evaluations after each sequence. So while the forward sequences are handled              
in order from the beginning of the wire to the end.  The backward sequences are actually out of order.  
 
This is why in the Keras code the backward evaluations have statefulness set to false, whereas                
statefulness can still be used in the forward processing. This lack of statefulness in the backwards                
processing means the performance in the beginning of the backward sequences is the weakest. And               
this is reflected by a drop in performance in the latter timesteps of combined result. 
 
To utilize statefulness for the backward direction it would be necessary to process all of the backward                 
sequences for a single wire in their correct order from last sequence to first and store the states so                   
that the correct backward state can be combined with the corresponding forward state once it has                
been processed. While this is possible programmatically and would add to the training time, it may be                 
unnecessary.  
 
Statefulness allows important states to pass from sequence to sequence, in effect turning a series of                
sequences into a single long sequence. It may be that an LSTM network would retain enough wire                 
structure to process sequences much longer than our designated 100 timesteps (Graves, 2008, 32). 
 
LSTM and Long Sequences 
To test if an LSTM network can in fact handle the entirety of single wire’s 9600 timesteps, we modify                   
our bidirectional model slightly to accept sequences of the full wire length. Also, statefulness is now                
unnecessary as each sample now represents a full time series from beginning to end rather than a                 
subset of the wire. 
 

01​  left = Sequential() 



02​  left.add(LSTM(16, ​input_shape=(9600,1)​, return_sequences=True,  
  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2)) 

03​  left.add(LSTM(16, return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2)) 

04​  right = Sequential() 
05​  right.add(LSTM(16, ​input_shape=(9600,1)​, return_sequences=True,  

  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,   

  go_backwards=True)) 

06​  right.add(LSTM(16, return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2, go_backwards=True)) 

07​  model = Sequential() 
08​  model.add(Merge([left,right], mode = ‘sum’)) 
09​  model.add(TimeDistributed(Dense(2))) 
10​  model.add(Activation(‘softmax’)) 
11​  model.compile(loss=’binary_crossentropy’, optimizer=Nadam()) 

 
Since the results from this model is classification over the entire wire of 9600 timesteps, we present                 
the F1 scores sampled from the 100 timesteps in the center of the wires (timesteps 4750 through 4849)                  
for comparison on our chart.  The metrics are for all timesteps in the wireset: 

 
True Positive:        1190498 

False Positive:         10353 

True Negative:       21509126 

False Negative:        330023 

Recall (TPR):          0.7830 

Specificity (TNR):     0.9995 

Precision:             0.9914 

Accuracy:              0.9852 

F1 Score:              0.8749 

AUC:                   0.9871 

 

 

 



We see a marked improvement in all our metrics. Notice in the visual that the false positives that likely                   
marked frequency structures in the noise have all but disappeared. Also, the problems caused by               
shorter sequences and lack of statefulness in backwards training are no longer relevant. If we return to                 
our example of the single wire we see better organization as well: 

 
We still see that the model has difficulty at the very ends of the particle intersection signal, but this                   
area is much reduced in size. Of the several modifications to the structure of the RNN model that were                   
tested, the bidirectional LSTM training over the full wire length has so far proven to be the most                  
effective, despite the length of the sequences at 9600 timesteps.  
 
Multiple Attributes 
In this experiment we will attempt to enhance the feature set over what has been presented before to                  
see if we can address the difficulty the model is having at the very ends of the signals. The current                    
single feature for each timestep we are attempting to classify is the value of the electrical pulse itself at                   
that timestep. The electrical pulses before and after a particular point are evaluated by the RNN and                 
provide their influence in the classification of that time step and should be redundant information if                
added as features. When we examine the visual map of how particles interact with the entire wire set,                  
we see a particle track often intersects the corresponding timesteps on neighboring wires as it               
intersects the wire plane. If we treat these neighboring pulses across wires as features of a single                 
timestep, we can see if this provides additional learnable structure for the RNN network. 
 

 
The data arrays are modified to now include the additional features. In our Keras model, the input                 
shape needs to account for these features as well: 
 

01​  left = Sequential() 
02​  left.add(LSTM(16, ​input_shape=(9600,5)​, return_sequences=True,  



  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2)) 

03​  left.add(LSTM(16, return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2)) 

04​  right = Sequential() 
05​  right.add(LSTM(16, ​input_shape=(9600,5)​, return_sequences=True,  

  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,   

  go_backwards=True)) 

06​  right.add(LSTM(16, return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2, go_backwards=True)) 

07​  model = Sequential() 
08​  model.add(Merge([left,right], mode = ‘sum’)) 
09​  model.add(TimeDistributed(Dense(2))) 
10​  model.add(Activation(‘softmax’)) 
11​  model.compile(loss=’binary_crossentropy’, optimizer=Nadam()) 

 
Since this experiment uses the full 9600 timestep sequence, we again present the F1 scores from the                 
100 timesteps in the center (timesteps 4750 through 4849) for comparison: 

 
 
True Positive:        1260769 

False Positive:         17218 

True Negative:       21502261 

False Negative:        259752 

Recall (TPR):          0.8292 

Specificity (TNR):     0.9992 

Precision:             0.9865 

Accuracy:              0.9880 

F1 Score:              0.9010 

AUC:                   0.9887 

 



Overall, there is a modest gain in the metrics. Comparing this visual to the previous experiment, there                 
appears to be a kind of “clumping” among neighboring wires within the leading edge of the particle                 
intersections, an obvious result of including pulses from neighboring wires as features to a single               
timestep. 
 
Brute Force 
Seeing the slight benefit provided by including neighboring wires in evaluating a single timestep, we               
can try to expand on this with a couple of modifications to the model. We will increase the window of                    
features to include nine wires. We will also double the nodes in our hidden layers to see if there is any                     
unexplored complexity in the wire data. This is a rather brute force approach but is not bad to try after                    
settling on model structure: 
 

01​  left = Sequential() 
02​  left.add(LSTM(​32, input_shape=(9600,9),​ return_sequences=True,  

  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2)) 

03​  left.add(LSTM(​32,​ return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2)) 

04​  right = Sequential() 
05​  right.add(LSTM(​32, input_shape=(9600,9),​ return_sequences=True,  

  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,   

  go_backwards=True)) 

06​  right.add(LSTM(​32​, return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2, go_backwards=True)) 

07​  model = Sequential() 
08​  model.add(Merge([left,right], mode = ‘sum’)) 
09​  model.add(TimeDistributed(Dense(2))) 
10​  model.add(Activation(‘softmax’)) 
11​  model.compile(loss=’binary_crossentropy’, optimizer=Nadam()) 

 
 
 
 

 
True Positive:        1397764 

False Positive:         68122 

True Negative:       21451357 

False Negative:        122757 

Recall (TPR):          0.9193 

Specificity (TNR):     0.9968 

Precision:             0.9535 

Accuracy:              0.9917 

F1 Score:              0.9361 

AUC:                   0.9899 

 
 



 
Again, there are modest overall gains in the metrics, though these results are achieved at a cost. The                  
primary difficulty with adding nodes and features is the added computational complexity. These             
experiments use a data generator and various GPUs, so direct comparisons between models cannot be               
100% accurate. However the chart below gives a rough approximation of the growth in resource               
requirements for each model: 
 

Experiment 

Keras Model 
Parameters 
(weights and 
bias terms) 

F1 Score 
Achieved 

AUC 
Achieved 

Approximate 
Training Time for  
10 Epochs (hours) 

Simple RNN 850 .4372 .8547 14 

LSTM 3298 .6075 .8760 30 

Stateful LSTM 3298 .6324 .8864 30 

Bidirectional LSTM 6562 .7284 .9571 40 

Long Sequence LSTM 6562 .8749 .9871 33 

Multiple Attributes 7074 .9010 .9887 47 

Brute Force 27458 .9361 .9899 138 

The slight gain achieved by the Brute Force experiment over the other models hardly seems worth the                 
extra training time. However, this model not only performs the best overall, the ends of the particle                 
intersection signals which proved troublesome for the other models appear less difficult for this              
classifier. 
 
A Faster Model 
In this experiment we will attempt reduce the training time of the Brute Force approach without                
sacrificing too much of discrimination power it was able to achieve.  
Two things that distinguished the Brute Force model from the others was the doubling of hidden                
nodes in the LSTM layers and the increase of features per timestep. The growth in training time                 
correlates directly with the increase in the model parameters (weights and bias terms) that need to be                 
updated with each round of training. As a compromise, we will cut this down to 20 hidden nodes and                   
use 7 features per timestep, 3 neighboring wires on each side. 
 



There are also a RNN option that may assist in reducing computational complexity. Gated Recurrent               
Units (GRUs) are a variation of LSTMs that combine the cell state and hidden state into one internal                  
structure. The output gate is also eliminated, meaning the entire unit output is passed to the next                 
GRU unit instead of being regulated. Despite these simplifications, GRUs have been shown to perform               
on par with LSTMs (Chung, Gulcehre, Cho, Bengio, 2014). The net result of all these changes is a                  
reduction in the number of calculations per training round. In fact the Keras parameters for this                
model number 8322 as compared to 27458 for the Brute Force model. 
 
Another obvious contributor to training time is the size of the training data set. So far we’ve used all of                    
the wire data from four simulated events. It could be there is enough similarity among the simulated                 
waveforms that this training set could be reduced in size without losing the variation that is desireable                 
in training data. We will randomly sample groups of wires from the four events and drastically reduce                 
our training set to approximately ⅓ its previous size. 
 

01​  left = Sequential() 
02​  left.add(​GRU(20, input_shape=(9600,7),​ return_sequences=True,  

  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2)) 

03​  left.add(​GRU(20,​ return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2)) 

04​  right = Sequential() 
05​  right.add(​GRU(20, input_shape=(9600,7),​ return_sequences=True,  

  activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,   

  go_backwards=True)) 

06​  right.add(​GRU(20,​ return_sequences=True,activation=‘softsign’,  
              dropout_W=0.2, dropout_U=0.2, go_backwards=True)) 

07​  model = Sequential() 
08​  model.add(Merge([left,right], mode = ‘sum’)) 
09​  model.add(TimeDistributed(Dense(2))) 
10​  model.add(Activation(‘softmax’)) 
11​  model.compile(loss=’binary_crossentropy’, optimizer=Nadam()) 

 
 
 

 
True Positive:        1371610 

False Positive:         50571 

True Negative:       21468908 

False Negative:        148911 

Recall (TPR):          0.9021 

Specificity (TNR):     0.9976 

Precision:             0.9644 

Accuracy:              0.9913 

F1 Score:              0.9322 

AUC:                   0.9899 

 



 
 
 
 
 
 
With only 47 hours of training, we       
appear to achieve relatively    
favorable scores. If we compare the      
AUC scores among the models, the      
Faster Model provides a very good      
return on our use of computation      
resources. Also of note is the high       
score achieved by the Long     
Sequence LSTM with only 33 hours      
of training: 

 
 

 
Frequency Noise vs. White Noise     
Simulations 
Throughout this paper experiment    
results have been presented using     
the frequency noise wire sets from      
the U plane. While all classification      
tests were performed on both types of background noise simulations, the frequency noise wire sets               
consistently performed worse than the white noise wiresets. Therefore we chose to present the              
detailed results using the more challenging frequency noise test data. For comparison, below are some               
of the metrics for the white noise wire set from the U plane tested using the same trained models: 
 

Experiment Frequency Noise, U plane White Noise, U plane 

F1 Score AUC F1 Score AUC 

Simple RNN .4372 .8547 .7536 .9273 



LSTM .6075 .8760 .7590 .9379 

Stateful LSTM .6324 .8864 .7638 .9356 

Bidirectional LSTM .7284 .9571 .8863 .9829 

Long sequence LSTM .8749 .9871 .9039 .9888 

Multiple Attributes .9010 .9887 .9197 .9914 

Brute Force .9361 .9899 .9486 .9921 

Faster Model (GRU) .9322 .9899 .9467 .9911 

 
What is interesting is that the training data for all models consisted of both types of distinct                 
simulations, yet this did not appear to adversely affect the performance of the models when classifying.                
A few tests were conducted in which the training and testing data were limited to just frequency or                  
white noise. However no appreciable advantage was noted between the classification performance of             
models trained on just one type of noise and those trained with mixed data. 
 
Areas of Further Exploration 
Despite the high scores achieved in overall metrics and the ability of the tested models to identify the                  
larger particle tracks on the wire planes, the smaller particle intersections, which may cover only a few                 
timesteps on a single or a few wires, are largely invisible to the trained classifiers. Different model                 
structures and parameters will need to be tested to effectively classify these more subtle signals in the                 
data. 
 
As more realistic simulation data is made available, it would be useful to train the more effective                 
models on this data and then test against actual detector output. Recurrent neural network              
performance against real waveforms could be a useful metric in evaluating the tools and methods used                
to produce simulated sequential data. 
 
Appendix A: Neural Network Parameters 
The primary focus of this paper has been to explore variations in overall recurrent neural network                
structure and data structure to improve classification performance on our test data. There are also a                
multitude of activations, tuning parameters, cost functions, and back propagation algorithms which            
can affect model performance to varying degrees. Though most traditional and several new model              
options are implemented in the Keras libraries, they are not fully explored in these experiments.               
Following are brief descriptions of the parameters used throughout these experiments. 
Number of Layers and Nodes 
The choice of network size (number of layers and nodes) can often be arbitrary. After several informal                 
trainings, a modestly sized network was chosen as it seemed capable of capturing the complexity               
within this specific dataset and highlighting the results achieved by the different types of RNN               
structures.  
 
Inner Activations 
In a typical feed-forward network, each node in a neural network contains an activation function that                
determines the output of that node based on the sum of the inputs. In recurrent neural networks,                 
specifically LSTMs, the activations serve to control the gates within the LSTM structure. These              
activations are typically sigmoids. ​Softsign is similar to Tanh but can be better in avoiding saturation,                
where the network fails to learn, or respond to new inputs. (Glarot, Bengio, 2010) 



 
Dropout 
Ideally, a trained network should be generalized, meaning it can produce correct output for input it                
has not yet seen. An overfit network has had its weights so tuned that it only performs well on the                    
training data. ​Dropout is a technique where node connections are randomly ignored (or dropped) at               
each training epoch. When training is complete all node connections are used during classification.              
This technique has been shown to help in avoiding overfitting and preserve a network’s ability to                
generalize. (Srivastava, Hinton, Krizhevsy, Sutskever, 2014) 
 
Output Activation 
Softmax is a logistic function often used in probabilistic classification ​that takes a vector of inputs and                 
returns vector of real number outputs from 0 to 1 that add up to 1. Each class would have an output                     
that represents the probability of belonging to that class. Typically the highest probability represents              
the decision of the classifier, or a threshold is chosen as a determinant. (Theodoridis, Koutroubmas,               
2009, 174) 
 
Loss (or cost) Function 
The loss function returns a value representing a penalty for incorrect classification. The goal then is to                 
minimize the loss function when training. Mean square error is a common loss function used in neural                 
networks where equal value is placed on the error for each class. ​Log loss (or binary cross entropy in                   
Keras) places different levels of penalty based on confidence. So a wrong classification of low               
confidence is penalized less where a wrong classification with high confidence is penalized harshly              
(Rosasco, Caponnetto, Piana, 2003). 
 
Optimizers 
The optimizer is the backpropagation algorithm used to propagate error through the network and              
adjust the weights. ​Nadam is the Keras implementation of the RMSprop algorithm (Hinton, 2014), a               
gradient descent algorithm with an adaptive learning rate, combined with ​Nesterov momentum            
(Sutskever,  Martens, Dahl, Hinton, 2013). 
 
Appendix B: Using Keras 
In the event the reader is interested in exploring the Keras library further, the following sections                
provide some brief notes and additional Keras code. For clarity just the minimum code is presented.                
Full documentation, installation and dependency instructions, additional tuning parameters, default          
settings, and more examples are available at the developer’s website  ​https://keras.io/​. 
 
Training a Model 
Once the model has been instantiated and compiled, a single line is needed to initiate training: 
 

01​  model.fit(X, Y, batch_size=96, nb_epoch=10,   

              validation_data=(valX,valY), verbose=2) 

 
X and Y are array like objects that represent the training data and training labels respectively. Here we                  
have a batch size of 96, which means 96 samples will be handled at a time until the entire training set                     
has been processed. The number of epochs is 10, which is the number of times the full training set will                    
be processed. We have prepared a separate, smaller set of data for validation at each epoch. The data                  
and labels are also array like objects. The verboset=2 setting is a flag for Keras to output to console                   

https://keras.io/


simple metrics after each epoch while it is training. The samples or instances in booth data and                 
validation data sets need to be shaped the same as the input shape specified in the model. 
 
Testing a Model 
The following command will return an array of predictions on the dataset X: 
 

01​  predictions = model.predict(X, batch_size=96, verbose=0) 

 
The prediction probabilities can also be obtained using the following command: 
 

01​  probabilities = model.predict_proba(X, batch_size=96, verbose=0) 

 
Preparing the Data 
The data and labels that are passed into the model need to match the shape specified in the model                   
instantiation. If we want to train 1000 instances, each with 100 timesteps, and each time step is                 
represented by one feature, the shape of that array is (1000, 100, 1). The input shape for the model                   
covers the sequence length and number of attributes only. So in the model we would specify                
input_shape = (100, 1). 
 
A few of the loss functions in Keras require the classes for the samples to be submitted in categorical                   
format. For example, if there are three possible classes, classes 1, 2 and 3 are labeled as [1,0,0], [0,1,0]                   
and [0,0,1] respectively.  Keras provide a utility to create these labels if needed: 
 

01​  from keras.utils import np_utils 
 

02​  newlabels = np_utils.to_categorical(oldlabels, 3) 

 
In the example above we are converting an array of single value labels (oldlabels), where a label can be                   
one of three classes, into an array of categorical labels (newlabels) where each label is represented by a                  
three element vector. The output from a model accepting categorical labels will also be in the form of                  
categorical labels. 

 

Data Generator in Python 
A python generator was used during these experiments due to the size of the training set. While                 
training is faster when a complete dataset is provided to model.fit, you can sacrifice speed for memory                 
when necessary. A data generator can get data from the external files as needed and pass it to the                   
model: 
 

01​  def data_generator(): 
02​      continue = True 
03​      while continue:   

04​          # code to get data and labels from file 
05​          # code to shape data and labels into x and y 



06​          # set continue flag when needed 
07​          yield x, y 

 
Then when training, place model.fit in a loop that runs until the generator is empty. This can run                  
within another loop of epochs: 
 

01​  for i in range(number_epochs): 
02​      for X,Y in data_generator(): 
03​          model.fit(X, Y, batch_size=96, nb_epoch=1) 

 
Stateful RNN 
It is important that during stateful training and testing, the sequences are fed into the network in                 
order. Sample x should be the 100 timesteps that follow sample x-1, and so on, since the last timestep                   
in sample x-1 is the immediate predecessor to the first timestep in sample x.  
 
If we happen to be processing a sequence that is truly the beginning of a larger sequence, and we do                    
not want to pass the state of the last sequence into the network (since it is unrelated to the new                    
sequence) we can reset the state of the network, making it initially stateless for that specific sample: 
 

01​  model.reset_states() 

 
This method is usually invoked on a per batch or per epoch basis as long as larger sequences are                   
mapped to begin at a new batch or epoch. The processing of next sequence after this command will                  
immediately return the network to stateful. This method is usually placed in a loop where each                
iteration of the loop corresponds to new initial sequences requiring the model state to be reset. 
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