
Supervised Training of Recurrent Neural Networks with Simulated Detector Sequences

Roberto Santos, September 2016

The goal of this study is utilize recurrent neural networks (RNNs) to label simulated liquid argon
detector signals generated with LArSoft. The simulated signals represent the electrical pulses received
by the three wire sets in the detector as sub atomic particles intersect the wires . Within an event
window, a single wire will return 9600 sequential measurements. Where a particle intersects a wire
corresponds to when the intersection pulses occur in the sequence of measurements. In general, these
intersection events can produce electrical signals which are easily distinguishable from the
background electrical measurements. However, as these events span several timesteps, the true
beginning and end of the particle intersection can be obscured by the background noise. Also, smaller,
less powerful intersections can be completely obscured by the pattern of background pulses. Given
the temporal nature of the wire measurements, the problem of pulse classification is a natural fit for
RNNs.

Through the experiments in this paper, we will strive to find an effective combination of recurrent
model structure and data preparation which will be able to label the simulated wire signals accurately.

Keras
Several open-source neural network libraries are currently available. Keras (Chollet,2015) was chosen
to run the experiments in this paper for the following reasons:

● Support for standard neural network structures and tuning parameters, including several
flavors of RNNs.

● Dependencies are easily supported by current lab software.
● Runs on top of Theano or TensorFlow and can be accelerated with GPUs.
● Adequate online documentation available for starting basic structures.
● Simple, expressive Python syntax makes it easy to implement different models and present

code that is easy to follow.
● As of this writing, the library is actively supported by the developer and an active online

community.

Throughout this paper, sample Python code utilizing Keras is presented to describe RNN models. The
actual experiment code utilized a YAML file to set experiment and model parameters. The RNN
models were then constructed from these settings from a generic model generator. The code
presented in this paper are exact hardcoded translations of the generated models and would produce
identical results.

At the end of this document, additional code is presented to round out the examples should the reader
wish to experiment with Keras on their own (Appendix B). Also included is a brief description of the
common model parameters used in the experiments, but whose choice was not a focus of this paper
(Appendix A). Please note the line numbers in the code are for identification only and are not part of
Python or Keras. The original experiment code and setting files for this paper can be found at:

https://github.com/roberto0179/AnalysisWork/tree/master/rnn_experiments

Glossary of Machine Learning Terms

https://github.com/roberto0179/AnalysisWork/tree/master/rnn_experiments

Several accepted terms and formulas for evaluating the performance of machine learning models
(Fawcett, 2005) are used throughout this paper. How these terms are defined and calculated are
outlined below:

● Signal vs Noise: used to describe the data in a binary classification problem. Signal is
considered the data point of interest that is to be separated or distinguished from the
background data, or noise. Signal is commonly labeled with a ‘1’ and noise labeled with a ‘0’. In
our simulated wire data, the electrical pulses marking particle interaction with the wire are
sigal, all other electrical pulses resulting from other sources are noise.

● True Positive (TP):​ the number of signal samples correctly identified as signal by the classifier.
● True Negative (TN):​ the number of noise samples correctly identified as noise by the classifier.
● False Positive (FP): ​the number of noise samples misclassified as signal.
● False Negative (FN):​ the number of signal samples misclassified as noise.
● Recall or True Positive Rate (TPR)​ = TP / (TP + FN)
● Specificity or True Negative Rate (TNR)​ = TN / (TN + FP)
● Precision​ = TP / (TP + FP)
● Accuracy​ = (TP + TN) / (TP + TN + FP + FN)
● F1 Score = 2 * (Precision * Recall) / (Precision + Recall) = 2TP / (2TP + FP + FN); F1 Score is

the harmonic mean of precision and recall.
● Area Under ROC Curve (AUC): ​The Receiver Operating Characteristic is a plot of the

performance of a binary classifier as the discrimination threshold is varied. In other words, a
plot of the True Positive Rate versus the False Positive Rate. AUC is the area under this curve.
Many classification metrics assume a 0.5 threshold for classification. AUC provides a measure
of how a classifier performs over the entire threshold range.

Description of the Data
Our testing will consider a binary classification, where we will attempt to distinguish particle track
signals from background noise in the wire sequence.

The simulated data represent the electrical pulses received by the three wire sets in the detector. Two
of the wire sets (U and V) consist of 2400 wires. The third set Y, consists of 3456 wires. Each wire will
record 9600 pulses in a single event window. This means a single simulated event window will consist
of 8256 continuous sequences totalling just over 79 million electrical pulses.

Three separate, but related sets of electrical data were extracted for each event window. The first
turned off the simulated background sources, isolating just the particle intersection signals for each
wire. This served to build our labeling set, and these pulses were converted to 0 and 1 to represent
background and signal respectively.

The second set laid simulated frequency noise on top of the intersection signals. The third set
incorporated simulated white noise on top of the intersection signals. Separating the frequency and
white noise doubled the sequences generated for each event window. Though each set is derived the
from the same target set.

Initially, representing the electrical pulses as deltas was considered, where the value at each timestep
represented the change from the previous signal. However it was decided using deviation from the
median of the sequence would provide better overall context for each signal - allowing a smaller
segment of wire to retain its relationship to the values of the parent wire. Also, when utilizing

bidirectional networks there would be no need to recalculate the deltas for the backward leg of the
network.

For our initial dataset, we extracted the wire data from five simulated events from MicroBooNE . The
data from four of these events was reserved for the training and validation of RNN models. The fifth
set of data was used exclusively for testing. Thus making 66048 thousand whole wire sequences
available for training and validation, and 16512 whole wire sequences available for testing.

Feedforward Networks
To explain how recurrent neural networks work, we will first provide a very general description of
feedforward network for contrast (Graves, 2008, 12-18). In this simple example we have a network with
3 input nodes, a hidden layer with 4 nodes and an output layer with two nodes or classes, in other
words a binary classifier (image from Wikipedia, 2016).

Between two layers, all nodes are interconnected with
adaptive numeric weights which are initially set to
random values. The input nodes are the values, or
features, that describe a single sample. The hidden
nodes contain sigmoid activation functions that take
the sum of weighted inputs to that neuron and
determine whether the neuron “fires” or not. The
output neurons represent the classes. A particular
sample will be represented by a value of 1 in the neuron
that identifies its class and a value of 0 in the other
output neurons.

In training such a network, a single sample,
represented by 3 features, is passed into the network.
These values are multiplied by the weights as they pass
to the hidden layer. At each neuron in the hidden layer,
the weighted values are summed and the activation
function applied. If the neuron fires a 1 passes out of
the neuron to each of the output nodes, where a weight is applied along the connecting edge. At each
output node the weighted inputs are summed and compared to the correct output for the sample.

At this point the output is likely different from what is should be, and this is because the weights have
random values. This is where the backpropagation algorithm is applied. The difference between the
values at the output nodes and what they should be is the error for each node. These error values are
sent back to hidden nodes, with the same edge weights applied. At the hidden nodes the error is
calculated, and if there are additional hidden layers, these errors are sent back through the network
until the error for each node (except the input nodes) is calculated. As a final step, the weights going
into each node are adjusted slightly so that the error should decrease. Whether a weight should
increase or decrease is determined by a gradient descent algorithm.

The above steps constitute a single round of training for a single sample. As this is repeated with
additional samples, the desired result is that the weights achieve an optimal value so that error for all
samples is minimized. Each training sample that is passed into the network acts on the network
independently, and weights are adjusted specifically to the error produced by that sample. There is no

implied relationship between features beyond their shared relationship to a single sample. If we
identify the features in this example as A,B and C, it is important that for each sample, feature A enter
the same input neurons as feature A for the other samples. However, whether the input neurons are
ordered A-B-C or C-A-B in the model would have no impact on the resulting training.

How RNNs work
On the other hand sequential information, such as words in a sentence or signals in an electrical
waveform, derive a significant portion of their meaning from their context. The individual discernible
segments in a sequence have a temporal relationship with each other. What comes before, and
sometimes what comes after, a particular point in a sequence helps to identify that point. C follows B
follows A has meaning. Recurrent neural networks (Graves, 2008, 18-21) are ideally suited to sequential
information in that they allow steps in a sequence to influence the evaluation of succeeding steps.

In an RNN the same set of calculations are performed on each and every element of a sequence,
however the output at each timestep in the sequence is dependent on a portion of the prior calculation
from the previous timestep . In general, a recurrent network can be visualized as follows:

(from Nature through Britz)

In the condensed model at left, ​x is the input sequence and o is the output. ​U,V and ​W are the
parameters or weights. ​S is the hidden state or hidden layers of the network. All of this is fairly
analogous to our previous example of the feedforward network except for one important term: the ​W
parameter that loops back to hidden layer. To visualize what the ​W ​term is doing here we can expand
the model, or unfold it. In the diagram on the right, ​x ​represents each of timesteps in the sequence.
Each timestep in the sequence produces an output ​o​. After the hidden state ​s is calculated for the first
timestep, a weighted value ​W becomes part of the calculations for the hidden state of the next time
step, and so on.

A slightly modified backpropagation algorithm, called backpropagation through time, is applied to the
unfolded network. Similar to the feedforward network, the error for each node at each hidden state is
propagated back to the very first element in the sequence. However, the major difference from the
feedforward network is that the gradient updates are averaged and applied equally to the
corresponding weights at each timestep. Remember, each hidden state in the sequence, with the all
the weights, biases and activation functions, is identical for each element in the sequence. So are the
U,V ​and ​W​ parameters. This process is repeated for each new training sequence sample.

Simple RNN

In our first experiment we will attempt to train with and classify small segments of our wire sequence.
We will slice the 9600 wires into sequences only 100 timesteps long and train on a two layer deep RNN.
This model will return a classification on each of the 100 timesteps in the testing sequences.

The Keras implementation for this model:

01​ model = Sequential()
02​ model.add(SimpleRNN(16, input_shape=(100,1), return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2))

03​ model.add(SimpleRNN(16, return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2))

04​ model.add(TimeDistributed(Dense(2)))
05​ model.add(Activation(‘softmax’))
06​ model.compile(loss=’binary_crossentropy’, optimizer=Nadam())

So that the reader can become familiar with how Keras implements a model and its parameters, here is
a brief description of each line of code:

1. Instantiate model.
2. Add a 16 node, recurrent neural network layer. The first layer requires a description of the

input sequence, in this case it’s a sequence 100 timesteps long where each timestep consists of
a single attribute. Since we want every output from the sequence and not just the last one,
return_sequence is set to True. The activation can be any number of typical functions such as
tanh or relu. In this case we are using softsign. Dropout helps to keep the network from
overfitting to the training data. Here we are applying dropout to the input weights(W) and
recurrent weights(U).

3. Here we add a second RNN layer, however the input description is not required.
4. This is our output layer with 2 nodes, one for each class. The TimeDistributed wrapper allows

us to return the output at each timestep. Otherwise just the output from the last timestep
would be returned.

5. This adds the activation function softmax to the output layer. Softmax is a typical activation for
binary classification.

6. We compile our model to ready it for use. Our loss function is binary cross entropy, Keras’
version of logistic loss. The optimizer is applied to our gradient descent algorithm to assist in
updating weights during back propagation. Nadam is a version of RMSprop (which adapts
learning rates during training and is commonly used in training recurrent nets) that adds
Nesterov’s Momentum.

After training for just 10 epochs we achieve the following overall classification performance for our
model on the frequency noise simulation for the U wire set in our test dataset:

True Positive: 955897

False Positive: 1896306

True Negative: 19623173

False Negative: 564624

Recall (TPR): 0.6287

Specificity (TNR): 0.9119

Precision: 0.3351

Accuracy: 0.8932

F1 Score: 0.4372

AUC: 0.8547

Our F1 score throughout the sequence is unimpressive, though fairly consistent after an initial drop.
Since the particle intersection events on a wire can be mapped to a location on the wire based on its
occurrence in the time sequence, it is fairly straightforward to visualize the performance of our trained
model by mapping the predictions on a grid of wires and timesteps. We can look at a small window
from this grid taken from one of the frequency noise wire sets in our test data. It is important to note
that the sequences start on the left and end on the right:

Visually, we can see the main tracks of intersection where particles cross the wire plane. Given the
background in this test sample is comprised of frequency noise, it is easy to imagine that the network
is mistaking the false structures of the frequency noise (red lines) as particle interaction. We can also
see that while the model is generally finding the main structures of the particle intersection signals, it
is missing the large parts of these structures, often on the left or beginning of these structures as it
trains left to right. The results looks even more chaotic on a single section of wire:

How LSTMs work
Training an RNN can suffer from the same problem as a deep multilayer network in that as error
calculations travel back through multiple nodes, most of the correction occurs closer to the beginning
of the back propagation, or toward the end of the sequence, and it becomes harder to adjust weights
earlier in the unfolded sequence. This is termed the vanishing gradient problem. (LISA Lab, 2010) As
the sequences in an RNN become longer, earlier timesteps have less influence on correcting the
gradients in the hidden state. That means for long sequences, the most recent timesteps greatly
influence training, whereas earlier timesteps affect training very little or none at all. If we view the
influence of the value passed along the ​W edge in the RNN illustration as a kind of memory, then the
RNN can only remember a few timesteps prior to the current step in the sequence.

Long Short Term Memory networks, or LSTM, (Graves, 2008, 31-38) are a modification of RNNs that
allow the influence of timesteps to be passed further along a sequence than is possible with a simple
RNN. This is accomplished through the addition of a separate cell state that is passed to each timestep.
At each timestep this cell state can be altered or allowed to pass unchanged through the current
timestep to the next one. The cell state can also be fed into the current hidden state calculations to
provide its influence. In this way the value of hidden states occurring early in a sequence can find their
way all the way through to last element in a sequence.

(Olah)

To explain this structure as simply as possible (LISA Lab, 2010) - Each rectangular area represents the
processing of a single timestep in the sequence. The bottom horizontal path is similar to the hidden
state portion of a regular RNN. The top horizontal path is the cell state which makes LSTMs different.
Between these two paths there several sigmoids which act as gates through which the hidden state can
affect the cell state. Toward the end of this structure the cell state provides its influence on the
hidden state and the output for the timestep. Both the hidden state and cell state are then passed to
the next timestep. It is easy to see how the addition of the cell state sidesteps the vanishing gradient
problem by providing a potentially uncluttered path from timestep to timestep. In this way, the LSTM
is able to ‘remember’ over a much longer sequence than a regular RNN.

LSTM Model
We can change our earlier RNN model to an LSTM model in Keras simply by changing the two hidden
layer instantiations:

01​ model = Sequential()
02​ model.add(​LSTM​(16, input_shape=(100,1), return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2))

03​ model.add(​LSTM​(16, return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2))

04​ model.add(TimeDistributed(Dense(2)))
05​ model.add(Activation(‘softmax’))
06​ model.compile(loss=’binary_crossentropy’, optimizer=Nadam())

We left the other parameters unchanged and again trained for 10 epochs and achieved the following:

True Positive: 727361

False Positive: 146812

True Negative: 21372667

False Negative: 793160

Recall (TPR): 0.4784

Specificity (TNR): 0.9932

Precision: 0.8321

Accuracy: 0.9592

F1 Score: 0.6075

AUC: 0.8760

Aside from recall, all of our metrics have improved over the regular RNN. Here there is a significant
improvement in the false positives. The network now appears to be learning to exclude the false
structures of the frequency noise (at some expense to the true positive rate). The results from the
LSTM network indicate that even in a sequence as short as 100 timesteps, a regular RNN is at a
disadvantage in learning important structures in the sequence.

Statefulness
In the two previous experiments there is enough misclassification occurring at the start of the
sequences that the our slicing boundaries are clearly visible in the visualizations of the results. Why is
easy to understand if we reexamine our diagram of the unrolled RNN.

At the beginning of the sequence the ​W vector is empty. There is
nothing being passed to the first timestep, and there is nothing
the first timestep can learn about its place within the sequence. In
fact, it can take several timesteps for the sequence to learn
enough structure about itself that the hidden state becomes useful
to the subsequent timesteps. A recurrent network missing this
initial hidden state is described as being stateless (Brownlee, 2016).

Seeing that our test sequences are actually sliced from a much longer sequence, we know that these
initial timesteps do exist within the context of previous data. It would be useful that when a new
sequence enters the network, the hidden state (and cell state of an LSTM) from the end of the previous
sequence could be inserted into the beginning of the next sequence. Thus rendering the network
stateful for the first timestep of the new sequence:

Stateful LSTM
Keras provides an easy mechanism to accomplish this. By setting stateful = True in each of the hidden
LSTM layers in lines 2 and 3, we direct the recurrent network to initiate a new batch with states from
the last batch.

01​ model = Sequential()
02​ model.add(LSTM(16, input_shape=(100,1), return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,

 ​stateful=True​))
03​ model.add(LSTM(16, return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2, ​stateful=True​))
04​ model.add(TimeDistributed(Dense(2)))
05​ model.add(Activation(‘softmax’))
06​ model.compile(loss=’binary_crossentropy’, optimizer=Nadam())

True Positive: 825181

False Positive: 264184

True Negative: 21255295

False Negative: 695340

Recall (TPR): 0.5427

Specificity (TNR): 0.9877

Precision: 0.7575

Accuracy: 0.9584

F1 Score: 0.6324

AUC: 0.8864

Adding statefulness to our model has not really improved the overall metrics. However the
classification performance of the initial timesteps is much improved and is now on par with the rest of
the sequence. The visualization confirms that the passing of hidden states from sequence to sequence
is having a positive effect on training, as the sequence slices that were visible in previous tests have
now disappeared.

Bidirectional Networks
The three networks tested thus far have one thing in common in regards to how training and testing
are handled. All of the sequences have a beginning and end, and these models process the timesteps
from beginning to end. If memory in an RNN is passed to subsequent timesteps, that means the
sequence after a specific timestep can have no bearing on its training or testing. Only the hidden
states from the previous timesteps are used in calculation.

This limitation can be visualized in the three previous models by where the preponderance of false
negatives are occurring, at the left or beginning of true positive segments. As the model encounters a
distinct particle track, it is not correctly identifying this segment until it has processed a significant
portion of it. The models appear to be more effective in latter half of these segments.

That the models are having difficulty in these specific pulses is not surprising. The electrical values in
these sections are easily hidden within the range of background noise. Yet this is also true for the back
end of these segments, and classification performance in these areas does not seem as weak. It can be
hypothesized that once the model has correctly placed itself within one of these segments, it handles
these more confusing sections differently. If the model could ‘look ahead’ to the pulses following a
timestep, it may process these early particle segments more effectively.

Bidirectional recurrent networks (Graves, Jaitly, Mohamed, 2013) attempt to tackle this problem by
including layers that process a sequence backwards. Essentially there are two sub-networks, each one
acting as a typical recurrent network, except that one processes the timesteps in the normal forward
manner, and the other processes the same sequence in reverse. The outputs from both of these
subnetworks is then merged so that each timestep is influenced by the forward processing and the
backward processing. The processing at the merge layer is handled timestep by timestep where any
number of functions can be applied. For example, summing the forward and backward outputs, or
taking the maximum value.

Bidirectional Model in Keras
Keras provides a shorthand wrapper for bidirectional networks that builds this structure under the
hood, however we are not going to use this and instead program it in the longer form so the basic
structure of bidirectional network can be more easily visible:

01​ left = Sequential()
02​ left.add(LSTM(16, input_shape=(100,1), return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,

 stateful=True))

03​ left.add(LSTM(16, return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2, stateful=True))

04​ right = Sequential()
05​ right.add(LSTM(16, input_shape=(100,1), return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,

 ​stateful=False, go_backwards=True​))
06​ right.add(LSTM(16, return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2, ​stateful=False,

 go_backwards=True​))
07​ model = Sequential()
08​ model.add(​Merge([left,right], mode = ‘sum’​))
09​ model.add(TimeDistributed(Dense(2)))

10​ model.add(Activation(‘softmax’))
11​ model.compile(loss=’binary_crossentropy’, optimizer=Nadam())

There are several special things to note about this model:

1. This instantiates the forward processing portion as its own model.
2. This line and the next are the two hidden layers of the forward processing portion of the

model. In all respects they are identical to the hidden layers of the stateful LSTM model
presented earlier. This layer has the input shape which describes the input data.

3. The second hidden layer of the forward processing model.
4. This instantiates the backward processing model. At this moment it is an entirely separate

model from the forward processing model.
5. This layer requires an input shape since it is the first hidden layer of a model. The attribute

go_backwards=True instructs the model to process the input sequence backwards. This
makes it unnecessary for us to prepare a separate set of training data with the timesteps
reversed. You will also notice that stateful=False in the the backwards processing. Why will be
explained a little later.

6. The second hidden layer of the backward processing model.
7. This instantiates the main model.
8. The layer merges the results from the forward and backward LSTMs into a single layer. The

‘left’ and ‘right’ models are passed in as arguments, along with the setting mode=sum. This
directs that the outputs from the two models are summed together.

9. This is the output layer as before, which returns a classification for each timestep
10. The activation for the output layer.
11. Compile the model for use.

True Positive: 1174592

False Positive: 529919

True Negative: 20989560

False Negative: 345929

Recall (TPR): 0.7725

Specificity (TNR): 0.9754

Precision: 0.6891

Accuracy: 0.9620

F1 Score: 0.7284

AUC: 0.9571

The metrics with this model have improved. In the visual we can see marked improvement in
recognizing the beginning of particle tracks on a sequence, though not everywhere. In fact
performance in this particular area is worse at the end (or right side) of the sequence slices. This is
apparent in the F1 score over the timesteps in the sequences and in our wire plane visual, where the
divisions between sequences are once again visible.

This model is bidirectional over the 100 timestep sequences only, not over the entire wirelength. The
reason for this is that this model processes the samples one sequence at a time and has to combine the
forward and backward evaluations after each sequence. So while the forward sequences are handled
in order from the beginning of the wire to the end. The backward sequences are actually out of order.

This is why in the Keras code the backward evaluations have statefulness set to false, whereas
statefulness can still be used in the forward processing. This lack of statefulness in the backwards
processing means the performance in the beginning of the backward sequences is the weakest. And
this is reflected by a drop in performance in the latter timesteps of combined result.

To utilize statefulness for the backward direction it would be necessary to process all of the backward
sequences for a single wire in their correct order from last sequence to first and store the states so
that the correct backward state can be combined with the corresponding forward state once it has
been processed. While this is possible programmatically and would add to the training time, it may be
unnecessary.

Statefulness allows important states to pass from sequence to sequence, in effect turning a series of
sequences into a single long sequence. It may be that an LSTM network would retain enough wire
structure to process sequences much longer than our designated 100 timesteps (Graves, 2008, 32).

LSTM and Long Sequences
To test if an LSTM network can in fact handle the entirety of single wire’s 9600 timesteps, we modify
our bidirectional model slightly to accept sequences of the full wire length. Also, statefulness is now
unnecessary as each sample now represents a full time series from beginning to end rather than a
subset of the wire.

01​ left = Sequential()

02​ left.add(LSTM(16, ​input_shape=(9600,1)​, return_sequences=True,
 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2))

03​ left.add(LSTM(16, return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2))

04​ right = Sequential()
05​ right.add(LSTM(16, ​input_shape=(9600,1)​, return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,

 go_backwards=True))

06​ right.add(LSTM(16, return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2, go_backwards=True))

07​ model = Sequential()
08​ model.add(Merge([left,right], mode = ‘sum’))
09​ model.add(TimeDistributed(Dense(2)))
10​ model.add(Activation(‘softmax’))
11​ model.compile(loss=’binary_crossentropy’, optimizer=Nadam())

Since the results from this model is classification over the entire wire of 9600 timesteps, we present
the F1 scores sampled from the 100 timesteps in the center of the wires (timesteps 4750 through 4849)
for comparison on our chart. The metrics are for all timesteps in the wireset:

True Positive: 1190498

False Positive: 10353

True Negative: 21509126

False Negative: 330023

Recall (TPR): 0.7830

Specificity (TNR): 0.9995

Precision: 0.9914

Accuracy: 0.9852

F1 Score: 0.8749

AUC: 0.9871

We see a marked improvement in all our metrics. Notice in the visual that the false positives that likely
marked frequency structures in the noise have all but disappeared. Also, the problems caused by
shorter sequences and lack of statefulness in backwards training are no longer relevant. If we return to
our example of the single wire we see better organization as well:

We still see that the model has difficulty at the very ends of the particle intersection signal, but this
area is much reduced in size. Of the several modifications to the structure of the RNN model that were
tested, the bidirectional LSTM training over the full wire length has so far proven to be the most
effective, despite the length of the sequences at 9600 timesteps.

Multiple Attributes
In this experiment we will attempt to enhance the feature set over what has been presented before to
see if we can address the difficulty the model is having at the very ends of the signals. The current
single feature for each timestep we are attempting to classify is the value of the electrical pulse itself at
that timestep. The electrical pulses before and after a particular point are evaluated by the RNN and
provide their influence in the classification of that time step and should be redundant information if
added as features. When we examine the visual map of how particles interact with the entire wire set,
we see a particle track often intersects the corresponding timesteps on neighboring wires as it
intersects the wire plane. If we treat these neighboring pulses across wires as features of a single
timestep, we can see if this provides additional learnable structure for the RNN network.

The data arrays are modified to now include the additional features. In our Keras model, the input
shape needs to account for these features as well:

01​ left = Sequential()
02​ left.add(LSTM(16, ​input_shape=(9600,5)​, return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2))

03​ left.add(LSTM(16, return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2))

04​ right = Sequential()
05​ right.add(LSTM(16, ​input_shape=(9600,5)​, return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,

 go_backwards=True))

06​ right.add(LSTM(16, return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2, go_backwards=True))

07​ model = Sequential()
08​ model.add(Merge([left,right], mode = ‘sum’))
09​ model.add(TimeDistributed(Dense(2)))
10​ model.add(Activation(‘softmax’))
11​ model.compile(loss=’binary_crossentropy’, optimizer=Nadam())

Since this experiment uses the full 9600 timestep sequence, we again present the F1 scores from the
100 timesteps in the center (timesteps 4750 through 4849) for comparison:

True Positive: 1260769

False Positive: 17218

True Negative: 21502261

False Negative: 259752

Recall (TPR): 0.8292

Specificity (TNR): 0.9992

Precision: 0.9865

Accuracy: 0.9880

F1 Score: 0.9010

AUC: 0.9887

Overall, there is a modest gain in the metrics. Comparing this visual to the previous experiment, there
appears to be a kind of “clumping” among neighboring wires within the leading edge of the particle
intersections, an obvious result of including pulses from neighboring wires as features to a single
timestep.

Brute Force
Seeing the slight benefit provided by including neighboring wires in evaluating a single timestep, we
can try to expand on this with a couple of modifications to the model. We will increase the window of
features to include nine wires. We will also double the nodes in our hidden layers to see if there is any
unexplored complexity in the wire data. This is a rather brute force approach but is not bad to try after
settling on model structure:

01​ left = Sequential()
02​ left.add(LSTM(​32, input_shape=(9600,9),​ return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2))

03​ left.add(LSTM(​32,​ return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2))

04​ right = Sequential()
05​ right.add(LSTM(​32, input_shape=(9600,9),​ return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,

 go_backwards=True))

06​ right.add(LSTM(​32​, return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2, go_backwards=True))

07​ model = Sequential()
08​ model.add(Merge([left,right], mode = ‘sum’))
09​ model.add(TimeDistributed(Dense(2)))
10​ model.add(Activation(‘softmax’))
11​ model.compile(loss=’binary_crossentropy’, optimizer=Nadam())

True Positive: 1397764

False Positive: 68122

True Negative: 21451357

False Negative: 122757

Recall (TPR): 0.9193

Specificity (TNR): 0.9968

Precision: 0.9535

Accuracy: 0.9917

F1 Score: 0.9361

AUC: 0.9899

Again, there are modest overall gains in the metrics, though these results are achieved at a cost. The
primary difficulty with adding nodes and features is the added computational complexity. These
experiments use a data generator and various GPUs, so direct comparisons between models cannot be
100% accurate. However the chart below gives a rough approximation of the growth in resource
requirements for each model:

Experiment

Keras Model
Parameters
(weights and
bias terms)

F1 Score
Achieved

AUC
Achieved

Approximate
Training Time for
10 Epochs (hours)

Simple RNN 850 .4372 .8547 14

LSTM 3298 .6075 .8760 30

Stateful LSTM 3298 .6324 .8864 30

Bidirectional LSTM 6562 .7284 .9571 40

Long Sequence LSTM 6562 .8749 .9871 33

Multiple Attributes 7074 .9010 .9887 47

Brute Force 27458 .9361 .9899 138

The slight gain achieved by the Brute Force experiment over the other models hardly seems worth the
extra training time. However, this model not only performs the best overall, the ends of the particle
intersection signals which proved troublesome for the other models appear less difficult for this
classifier.

A Faster Model
In this experiment we will attempt reduce the training time of the Brute Force approach without
sacrificing too much of discrimination power it was able to achieve.
Two things that distinguished the Brute Force model from the others was the doubling of hidden
nodes in the LSTM layers and the increase of features per timestep. The growth in training time
correlates directly with the increase in the model parameters (weights and bias terms) that need to be
updated with each round of training. As a compromise, we will cut this down to 20 hidden nodes and
use 7 features per timestep, 3 neighboring wires on each side.

There are also a RNN option that may assist in reducing computational complexity. Gated Recurrent
Units (GRUs) are a variation of LSTMs that combine the cell state and hidden state into one internal
structure. The output gate is also eliminated, meaning the entire unit output is passed to the next
GRU unit instead of being regulated. Despite these simplifications, GRUs have been shown to perform
on par with LSTMs (Chung, Gulcehre, Cho, Bengio, 2014). The net result of all these changes is a
reduction in the number of calculations per training round. In fact the Keras parameters for this
model number 8322 as compared to 27458 for the Brute Force model.

Another obvious contributor to training time is the size of the training data set. So far we’ve used all of
the wire data from four simulated events. It could be there is enough similarity among the simulated
waveforms that this training set could be reduced in size without losing the variation that is desireable
in training data. We will randomly sample groups of wires from the four events and drastically reduce
our training set to approximately ⅓ its previous size.

01​ left = Sequential()
02​ left.add(​GRU(20, input_shape=(9600,7),​ return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2))

03​ left.add(​GRU(20,​ return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2))

04​ right = Sequential()
05​ right.add(​GRU(20, input_shape=(9600,7),​ return_sequences=True,

 activation=‘softsign’, dropout_W=0.2, dropout_U=0.2,

 go_backwards=True))

06​ right.add(​GRU(20,​ return_sequences=True,activation=‘softsign’,
 dropout_W=0.2, dropout_U=0.2, go_backwards=True))

07​ model = Sequential()
08​ model.add(Merge([left,right], mode = ‘sum’))
09​ model.add(TimeDistributed(Dense(2)))
10​ model.add(Activation(‘softmax’))
11​ model.compile(loss=’binary_crossentropy’, optimizer=Nadam())

True Positive: 1371610

False Positive: 50571

True Negative: 21468908

False Negative: 148911

Recall (TPR): 0.9021

Specificity (TNR): 0.9976

Precision: 0.9644

Accuracy: 0.9913

F1 Score: 0.9322

AUC: 0.9899

With only 47 hours of training, we
appear to achieve relatively
favorable scores. If we compare the
AUC scores among the models, the
Faster Model provides a very good
return on our use of computation
resources. Also of note is the high
score achieved by the Long
Sequence LSTM with only 33 hours
of training:

Frequency Noise vs. White Noise
Simulations
Throughout this paper experiment
results have been presented using
the frequency noise wire sets from
the U plane. While all classification
tests were performed on both types of background noise simulations, the frequency noise wire sets
consistently performed worse than the white noise wiresets. Therefore we chose to present the
detailed results using the more challenging frequency noise test data. For comparison, below are some
of the metrics for the white noise wire set from the U plane tested using the same trained models:

Experiment Frequency Noise, U plane White Noise, U plane

F1 Score AUC F1 Score AUC

Simple RNN .4372 .8547 .7536 .9273

LSTM .6075 .8760 .7590 .9379

Stateful LSTM .6324 .8864 .7638 .9356

Bidirectional LSTM .7284 .9571 .8863 .9829

Long sequence LSTM .8749 .9871 .9039 .9888

Multiple Attributes .9010 .9887 .9197 .9914

Brute Force .9361 .9899 .9486 .9921

Faster Model (GRU) .9322 .9899 .9467 .9911

What is interesting is that the training data for all models consisted of both types of distinct
simulations, yet this did not appear to adversely affect the performance of the models when classifying.
A few tests were conducted in which the training and testing data were limited to just frequency or
white noise. However no appreciable advantage was noted between the classification performance of
models trained on just one type of noise and those trained with mixed data.

Areas of Further Exploration
Despite the high scores achieved in overall metrics and the ability of the tested models to identify the
larger particle tracks on the wire planes, the smaller particle intersections, which may cover only a few
timesteps on a single or a few wires, are largely invisible to the trained classifiers. Different model
structures and parameters will need to be tested to effectively classify these more subtle signals in the
data.

As more realistic simulation data is made available, it would be useful to train the more effective
models on this data and then test against actual detector output. Recurrent neural network
performance against real waveforms could be a useful metric in evaluating the tools and methods used
to produce simulated sequential data.

Appendix A: Neural Network Parameters
The primary focus of this paper has been to explore variations in overall recurrent neural network
structure and data structure to improve classification performance on our test data. There are also a
multitude of activations, tuning parameters, cost functions, and back propagation algorithms which
can affect model performance to varying degrees. Though most traditional and several new model
options are implemented in the Keras libraries, they are not fully explored in these experiments.
Following are brief descriptions of the parameters used throughout these experiments.
Number of Layers and Nodes
The choice of network size (number of layers and nodes) can often be arbitrary. After several informal
trainings, a modestly sized network was chosen as it seemed capable of capturing the complexity
within this specific dataset and highlighting the results achieved by the different types of RNN
structures.

Inner Activations
In a typical feed-forward network, each node in a neural network contains an activation function that
determines the output of that node based on the sum of the inputs. In recurrent neural networks,
specifically LSTMs, the activations serve to control the gates within the LSTM structure. These
activations are typically sigmoids. ​Softsign is similar to Tanh but can be better in avoiding saturation,
where the network fails to learn, or respond to new inputs. (Glarot, Bengio, 2010)

Dropout
Ideally, a trained network should be generalized, meaning it can produce correct output for input it
has not yet seen. An overfit network has had its weights so tuned that it only performs well on the
training data. ​Dropout is a technique where node connections are randomly ignored (or dropped) at
each training epoch. When training is complete all node connections are used during classification.
This technique has been shown to help in avoiding overfitting and preserve a network’s ability to
generalize. (Srivastava, Hinton, Krizhevsy, Sutskever, 2014)

Output Activation
Softmax is a logistic function often used in probabilistic classification ​that takes a vector of inputs and
returns vector of real number outputs from 0 to 1 that add up to 1. Each class would have an output
that represents the probability of belonging to that class. Typically the highest probability represents
the decision of the classifier, or a threshold is chosen as a determinant. (Theodoridis, Koutroubmas,
2009, 174)

Loss (or cost) Function
The loss function returns a value representing a penalty for incorrect classification. The goal then is to
minimize the loss function when training. Mean square error is a common loss function used in neural
networks where equal value is placed on the error for each class. ​Log loss (or binary cross entropy in
Keras) places different levels of penalty based on confidence. So a wrong classification of low
confidence is penalized less where a wrong classification with high confidence is penalized harshly
(Rosasco, Caponnetto, Piana, 2003).

Optimizers
The optimizer is the backpropagation algorithm used to propagate error through the network and
adjust the weights. ​Nadam is the Keras implementation of the RMSprop algorithm (Hinton, 2014), a
gradient descent algorithm with an adaptive learning rate, combined with ​Nesterov momentum
(Sutskever, Martens, Dahl, Hinton, 2013).

Appendix B: Using Keras
In the event the reader is interested in exploring the Keras library further, the following sections
provide some brief notes and additional Keras code. For clarity just the minimum code is presented.
Full documentation, installation and dependency instructions, additional tuning parameters, default
settings, and more examples are available at the developer’s website ​https://keras.io/​.

Training a Model
Once the model has been instantiated and compiled, a single line is needed to initiate training:

01​ model.fit(X, Y, batch_size=96, nb_epoch=10,

 validation_data=(valX,valY), verbose=2)

X and Y are array like objects that represent the training data and training labels respectively. Here we
have a batch size of 96, which means 96 samples will be handled at a time until the entire training set
has been processed. The number of epochs is 10, which is the number of times the full training set will
be processed. We have prepared a separate, smaller set of data for validation at each epoch. The data
and labels are also array like objects. The verboset=2 setting is a flag for Keras to output to console

https://keras.io/

simple metrics after each epoch while it is training. The samples or instances in booth data and
validation data sets need to be shaped the same as the input shape specified in the model.

Testing a Model
The following command will return an array of predictions on the dataset X:

01​ predictions = model.predict(X, batch_size=96, verbose=0)

The prediction probabilities can also be obtained using the following command:

01​ probabilities = model.predict_proba(X, batch_size=96, verbose=0)

Preparing the Data
The data and labels that are passed into the model need to match the shape specified in the model
instantiation. If we want to train 1000 instances, each with 100 timesteps, and each time step is
represented by one feature, the shape of that array is (1000, 100, 1). The input shape for the model
covers the sequence length and number of attributes only. So in the model we would specify
input_shape = (100, 1).

A few of the loss functions in Keras require the classes for the samples to be submitted in categorical
format. For example, if there are three possible classes, classes 1, 2 and 3 are labeled as [1,0,0], [0,1,0]
and [0,0,1] respectively. Keras provide a utility to create these labels if needed:

01​ from keras.utils import np_utils

02​ newlabels = np_utils.to_categorical(oldlabels, 3)

In the example above we are converting an array of single value labels (oldlabels), where a label can be
one of three classes, into an array of categorical labels (newlabels) where each label is represented by a
three element vector. The output from a model accepting categorical labels will also be in the form of
categorical labels.

Data Generator in Python
A python generator was used during these experiments due to the size of the training set. While
training is faster when a complete dataset is provided to model.fit, you can sacrifice speed for memory
when necessary. A data generator can get data from the external files as needed and pass it to the
model:

01​ def data_generator():
02​ continue = True
03​ while continue:

04​ # code to get data and labels from file
05​ # code to shape data and labels into x and y

06​ # set continue flag when needed
07​ yield x, y

Then when training, place model.fit in a loop that runs until the generator is empty. This can run
within another loop of epochs:

01​ for i in range(number_epochs):
02​ for X,Y in data_generator():
03​ model.fit(X, Y, batch_size=96, nb_epoch=1)

Stateful RNN
It is important that during stateful training and testing, the sequences are fed into the network in
order. Sample x should be the 100 timesteps that follow sample x-1, and so on, since the last timestep
in sample x-1 is the immediate predecessor to the first timestep in sample x.

If we happen to be processing a sequence that is truly the beginning of a larger sequence, and we do
not want to pass the state of the last sequence into the network (since it is unrelated to the new
sequence) we can reset the state of the network, making it initially stateless for that specific sample:

01​ model.reset_states()

This method is usually invoked on a per batch or per epoch basis as long as larger sequences are
mapped to begin at a new batch or epoch. The processing of next sequence after this command will
immediately return the network to stateful. This method is usually placed in a loop where each
iteration of the loop corresponds to new initial sequences requiring the model state to be reset.

Acknowledgements
This paper is a result of a 2016 Summer Internship with the Scientific Computing Division at Fermi
National Accelerator Laboratory and was completed under the direction and support of ​Jim
Kowalkowski, Assistant Division Head. Amitoj Singh was kind enough to provide special
training on the use of the Fermilab Wilson Cluster and available GPU resources. A special
thanks to Dr. Jie Zhou of Northern Illinois University for her inspired instruction and for
arranging this internship opportunity.

References

● Artificial Neural Network. (2016, August 9). In Wikipedia. Retrieved August 9, 2016.
https://en.wikipedia.org/wiki/Artificial_neural_network

● Britz, Denny. (2015, September 17). Recurrent Neural Networks Tutorial Part 1 - Introduction to
RNNs. Retrieved August 9, 2016.
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-t
o-rnns/

● Brownlee, Jason. (2016, July 28). Understanding Stateful LSTM Recurrent Neural Networks in
Python with Keras. Retrieved August 15, 2016.
http://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-network
s-python-keras/

https://en.wikipedia.org/wiki/Artificial_neural_network
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
http://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/

● Chollet, Francois. (2015). Keras. ​http://github.com/fchollet/keras
● Chung, Junyoung. Gulcehre, Caglar. Cho, KyungHyun. Bengio, Yoshua. (2014). Empirical

Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
https://arxiv.org/pdf/1412.3555v1.pdf

● Fawcett, Tom. (2005, December 19). An introduction to ROC analysis. Pattern Recognition
Letters, Volume 27, Issue 8, 861-874.
http://www.sciencedirect.com/science/article/pii/S016786550500303X

● Glarot, Xavier. Bengio, Yoshua. (2010). Understanding the difficulty of training deep
feedforward neural networks. Journal of Machine Learning Research, Volume 9, 249-256.
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

● Graves, Alex. (2008, July). Supervised Sequence Labeling with Recurrent Neural Networks.
Retrieved June 15, 2016. ​http://www.cs.toronto.edu/~graves/preprint.pdf

● Graves, Alex. Jaitly, Navdeep. Mohamed, Abdel-rahman. (2013) Hybrid Speech Recognition with
Deep Bidirectional LSTM. Retrieved August 16, 2016.
http://www.cs.toronto.edu/~graves/asru_2013.pdf

● Hinton, Geoffrey (2014, February 11). Neural Networks for Machine Learning, Lecture 6A.
Retrieved September 1, 2016.
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

● LISA Lab. (2010). LSTM Networks for Sentiment Analysis. Retrieved August 11, 2016.
http://www.deeplearning.net/tutorial/lstm.html#lstm

● Olah, Christopher. (2015, August 27). Understanding LSTM Networks. Retrieved August 11, 2016.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● Rosasco, L. De Vito, E. Caponnetto, A. Piana, M. (2003, September 30) Are Loss Functions All
the Same? Retrieved September 1, 2016.
http://web.mit.edu/lrosasco/www/publications/loss.pdf

● Srivastava, Nitish. Hinton, Geoffrey. Krizhevsy, Alex. Sutskever, Ilya. (2014). Dropout: A Simple
Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research,
Volume 15, 1929-1958. ​https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

● Sutskever, Ilya. Martens, James. Dahl, George. Hinton, Geoffrey. (2013) On the importance of
initialization and momentum in deep learning. JMLR: W&CP volume 28.
http://www.jmlr.org/proceedings/papers/v28/sutskever13.pdf

http://github.com/fchollet/keras
https://arxiv.org/pdf/1412.3555v1.pdf
http://www.sciencedirect.com/science/article/pii/S016786550500303X
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://www.cs.toronto.edu/~graves/preprint.pdf
http://www.cs.toronto.edu/~graves/asru_2013.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.deeplearning.net/tutorial/lstm.html#lstm
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://web.mit.edu/lrosasco/www/publications/loss.pdf
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
http://www.jmlr.org/proceedings/papers/v28/sutskever13.pdf

