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High Energy Physics has had great success in defining, designing, implementing, and 
deploying very large-scale scientific software frameworks. These frameworks have 
enabled thousands of scientists to collaborate, successfully developing and 
constructing applications and workflows to accomplish complex analysis campaigns 
that operate on petabyte-scale datasets in the context of Distributed Area High 
Throughput Computing. This talk explores the possibilities and discusses the 
opportunities on how these principals, practices, and concepts can be brought to bear 
in the era of exascale to help effectively utilize advanced computing features while 
increasing participation and productivity.

Abstract
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Energy Frontier
▪ Until September 2011: Tevatron 

at Fermilab
๏ Circumference: 3.75 miles
๏ Collision energy: ~2 TeV
๏ The mass of a proton is about 1 GeV

▪ Now: Large Hadron Collider 
(LHC) in Geneva, Switzerland
๏ Circumference 17 miles
๏ Collision energy ~13 TeV
๏ Particle beam: 100 Billion protons per 

bunch
▪ Fermilab is involved in the CMS 

experiment
๏ 100 million channels
๏ Collisions every 25ns
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Oliver Gutsche I Computing and the Higgs Boson - From Data to Discovery 13. August 2015

Compact Muon Solenoid (CMS)
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Neutrino Experiments
๏ Detect neutrinos and measure their masses
๏ Important Standard Model measurement, 

candidates for dark matter
๏ CP violation
๏ Produce neutrino beam and direct it to far 

detector, compare near and far detector 
measurements

▪ NOvA
๏ 500 miles to Ash River, Minnesota
๏ Measuring neutrino oscillations

▪ MicroBooNE
๏ Liquid Argon technology
๏ Neutrino interaction rate and mystery of 

excess events seen by MiniBooNE
▪ DUNE/LBNF (future)
๏ Far detector 4800 feet underground 
๏ 68K tons of liquid argon
๏ 3D imaging
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DUNE/LBNF

Short	Baseline	Program

NOvA



Data usage from HEP now and towards HL-LHC / DUNE era
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LHC expected data volumes

▪ Shown: RAW data expectations
๏ Derived data is 8x RAW ! (Reconstruction, Simulation)

▪ LHC Run 4 starts within the exabyte era
▪ How do we analyze that much data in the future?

6

RAW



SCPMT: data driven planning process

5/11/16 Panagiotis Spentzouris | Fermilab Operations review.23

2016
Capacity

2015
Capacity

Last	year’s
SC-PMT

This	year’s
SC-PMT

Actual

Within	~10%
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Intensity Frontier compute needs steadily 
climbing
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Trajectory

• We	can	predict	
computing	needs

• Steadily	climbing	as	
we	approach	the	
DUNE	era



Our current practices … 
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Software & Computing

▪ No surprise: Software is important for every step on the way to scientific 
results
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This	is	bigger	than	it	looks



• Organized to carry out 
large campaigns

• Output (files) used in 
downstream analyzes

• Ancillary data handling 
and use is non-trivial

Abstract production 
workflow
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Abstract production workflow

Generation

Simulation

Reconstruction

Interaction 
files

Raw data 
files

Tasks realized in discrete processing phases 
that operate on blocks of data and run to 

completion serially.

File/Site 
boundary

File/Site 
boundary

Data handling 
system interactions

Configuration: 
physics model 

parameters

Auxiliary data: 
seeds

Reduced 
data files

File/Site 
boundary

Configuration: 
physics 

parameters

Auxiliary data: 
seeds, geometry, 

alignment

Configuration: 
physics 

algorithms

Auxiliary data: 
calibration, 

geometry, mixing 
datasets

Data flow

Random 
data access

Control flow

produces many

produces many

produces many

consumes many

consumes many

Data services 
system interactions

Run-time system 
interactions
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USCMS	performed	a	demo	
here	at	SC	with	Google,	
running	>150K	jobs	carrying	
out	this	workflow,	operating	
with	.5	PB	of	data.



Experiment 
Drivers

DAQ
(artDAQ)

Simulation
Physics/Detector

Scientific Software Stacks (simplified)
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Scientific Software Framework
(art)

Raw	Data

Toolkit 
(LArSoft)

Simulated
Data

Reconstruction

Reconstructed
Data

Analysis / 
Visualization

Toolkit 
(LArSoft)

Toolkit 
(LArSoft)

Interfaces	&
integration

Not	shown:
Packaging
And	deploying

• Lots	of	shared	
infrastructure	
software

• Used	in	nearly	
all	stages	of	
production	
workflows



• An integrated and coherent framework for simulation, reconstruction, analysis and 
data taking

• Began ~2010 as an evolution of the CMS framework adapted for Intensity Frontier 
experiments, 

• Delivered as an external product

Detailed information on art, the event processing framework
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What does the framework do for you?

Mostly the framework exists to handle the tasks that you don’t care much about, but
which have to work.

reading input
writing output
loading libraries containing algorithms you want to run
configuring those algorithms
keeping track of how outpus were generated (“provenance tracking”), critical for
reproducibility
organizing histogram output
access to “global resources”: geometry information, calibrations, etc.
systematizing the handling of errors
timing modules, measuring memory use, tracking program execution

The framework does not know about physics.
The LArSoft toolkit, based on art , contains physics code.

2/4 date last updated for JBK — SC16

http://iopscience.iop.org/article/10.1088/1742-6596/396/2/022020/pdf

http://inspirehep.net/record/1229212



What are the parts of the “ecosystem”?
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Release 
Products

Build Products

Development 
Area

Source Code 
RepositoryExternalsscisoft.fnal.gov

Official 
Release

Job

Install

Release

Include Select

Select

Compile/link

Select

Commit, 
Push

Pull

Clone, Branch, 
Merge, Pull

• A build system
– Art has a specific set of tools based on cmake
– Experiments using art can use whatever they 

want.
• Release, dependency and environment control

– Working environment for any complete version of 
all software packages can be established

• Source code management 
– A defined process for support and maintenance

• A source (and binary) distribution mechanism



Can this be applied to Exascale problems?
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• Kinds of tasks 
within a full data 
processing 
campaign

Types of 
Processing 
Tasks
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Simulation

Data Reduction

Analysis

Generation
(from theory or heuristic model)

Modeling of Instrument Response 
(propagation through matter)

Packaging
(into Events)

Apply calibration & 
alignment

Hypothesis Generation
(particle ID)

Parameter estimation
(determine calibrations)

Statistical 
summaries

Plotting
(visual exploration)

Produce what might be of general interest

Make conclusions
Selection & 

filtering

Model comparison

Physics feature extraction
(has physical meaning, track 

finding, vertex finding)

Data mining
(clustering, pattern recognition)

Types of HEP Processing Tasks

Raw instrument data

N-tuple dataReduced data

Particle data

Graph data 
structures

Tabular data

Graph and 
array data 
structures

Event-level 
granularity

Variable-level 
granularity

(sub-event to 
multi-event)

Particle-level 
granularity
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• A successful scientific application requires that the bulk of the software 
contributions for data analytics and data reduction come directly from 
domain scientists

• Emerging computing architectures and hardware can make this difficult.
– Most domain scientists do not have the required expertise

• Ways that scientific output might be increased given this situation
– reduce the time spent writing code,
– reduce the time spent debugging and testing code,
– greatly increase the number of scientists that contribute, and
– allow all that code and the results that are produced to be shared within a 

community or even across communities.

Observations
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• Software infrastructure must exist within a framework, which
– Handles coordination of algorithms and exchange (and persistency) of data
– Allows design principles and features to be leveraged across science programs 

and experiments, minimizing duplication
– Provides the concepts, principles, interfaces, process, and constraints 

necessary for sharing and reuse
• A framework lives within a broader ecosystem, providing

– Management of development, testing, deployment, and run-time environment
– Connections necessary for conducting science: workload and workflow

management, data management, and data archival facilities

Need for software algorithmic frameworks
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• Principle components realized and refined through
– two generations of HEP collider-detector experiments
– two generations of HEP neutrino experiments, 
– deployments for cosmology (CosmoSIS), 
– explorations such as the LSST Dark Energy Science Collaboration 

(DESC) L3 analysis demo
• Software and principles shared across tens of experiments 

and across three different science domains within HEP

A proven path for HEP experiments
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• The LHC CMS experiment’s instance of this framework is shared among thousands 
of collaborators within a single experiment. A four-fold increase in the number of 
software contributors since inception
– CDF experiment with 400 unique contributors from 1997-2007,
– CMS experiment with nearly 1800 contributors over 2006-2016

• The art instance is shared among independent experiments in multiple scientific 
domains. 
– grown from just one experiment to nine experiments in three different program 

domains
• Collaborative features of art has enabled higher-level projects and community-

supported algorithm repositories
– LArSoft demonstrates sharing of module components (algorithms and 

simulation integration) across experiments with similar properties
– Artdaq provides data acquisition and real-time filter capabilities

Framework instantiations
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Moving towards exascale
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• Integrate Data Science with Simulation
• Goals

– produce a complete software framework
– enable synergistic simulation and analysis of both simulated and instrument data
– include both streaming real-time and near-real-time operations

• Features
– take advantage of exascale hardware I/O hierarchies
– Allow for efficient cooperative data analysis and simulation 
– coupling with an optimization toolkit
– Provide a controls component

• Not only take our infrastructure to HPC, but do something more

Can we take a bigger leap than just porting?
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• We have surveyed proposed exascale applications, asking about
– controls, 
– steered data analysis, 
– and simulation steering

• Found a strong overlap with projects involved with 
– earthquake prediction, 
– advanced accelerator modeling, 
– soft materials, 
– biological neutron science, 
– and manufacturing

• Applications cover an extremely broad scope
– indicates that tools combining simulation and data analysis with a controls aspect 

can have impact across the exascale computing landscape.

Integrated Data Science and Simulation
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External 
Data Simulation

Data Framework

Optimization 
Toolbox

Objective

A simple view
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• What might such a system look 
like?



• B

Data Analytics 
Framework

Optimization Toolbox

Data Simulation

For accelerator control optimization
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Synergia
Accelerator

Controls

Domain Specific
Probes and Data 

Reduction

MENNDL
(ORNL)

APOSMM
(ANL)
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Fastjet, etc.
(parameterized 

detector simulation)

Collider physics 
samples

• B

Data Analytics 
Framework

Optimization Toolbox

D
ata

Simulation

For experimental collider-detector physics
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Pythia

Parameter scan, 
Domain Specific
Probes and Data 

Reduction

Quality of match?
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• B

Data Analytics 
FrameworkData Simulation

For neutrino experimental physics
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Geant

MicroBooNE
reconstruction

Training sample 
preparation

Hyper-
parameter 

optimization

Deep 
learning 
toolkit
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https://hpcuserforum.com/presentations/paris-munich/CRAY.HPCUserForumOctoberParis%202015CRAY.pdf
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Data framework overview
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• These concepts, abstractions, protocols, 
and component relationships define this 
software framework

• Very successful within a High Throughput 
Computing context for data-intensive 
science 

• Hides complex details within the hexagon 
components from the scientist-contributor

• Run-time configuration components 
provide domain-specific parameterization 
needed to establish workflows from 
validated “plugin” algorithm libraries.

• The framework links to hardware-specific 
libraries for optimizing running.



Framework interactions with storage and memory
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Data Services

Data 
access Catalogs

Ancillary data 
access

(Databases)

Configuration
(algorithms 

and workflow)

Data Framework Application

Unified View

Datasets

Catalogs

AncillaryConfiguration

Data Framework Application

Traditional View

Config 
interface

Database 
interface

Data 
access 

interface

Catalog 
interface

File
System

File
System RDBMS

Web
Services
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• Putting this in context with the major 
workflow

• Utilizing memory hierarchy
– NVRAM / Burst buffer
– K-V Stores  / Dataspaces

Addressing I/O, data placement, 
and data locality
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Simulation

Data Reduction

Analysis

Raw data 
records

Selected 
data records

Reduced 
data records

Particle data 
records

Metadata 
records

Metadata 
records

 Summary 
records

Tabular 
data 

Statistical 
Objects
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High-speed	storage	
between	layers



Addressing data ingestion, archival, and provenance
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Real-time 
remote 
facilities 

connections

Data 
management 

facilities 
connections

Data archival 
system 

connectionsServices Layer

Data Analytics 
Framework

Optimization Toolbox
External 

Data

Simulation
Domain Specific
Probes and Data 

Reduction
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Where are we at now ... 
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art-HPC: Addressing I/O trends, et al.
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• Extending the ART Framework to 
Support Large Scale Multiprocessing 
for the Intensity Frontier
– Partnership with ANL
– Migration of art to HPC and Mira
– Using MPI
– Multi-threaded Geant4

• Target is to produce 1012 muons for 
muon g-2 on ALCF Mira

• Architected to addressed 
– limit I/O to filesystem
– scaling

art rank M

art rank 1
art rank 0

event generator

G4 MT simulation module

network 
output 
module

G4 
thread 

1

G4 
thread 

2

G4 
thread 

N

art event

G4 “event” aggregation point
Merge 10K particles from threads 

into the current art event

Current art event

rank 0 aggregator

output file

art rank M

art rank 1
art rank 0

event generator

G4 MT simulation module

network 
output 
module

G4 
thread 

1

G4 
thread 

2

G4 
thread 

N

art event

G4 “event” aggregation point
Merge 10K particles from threads 

into the current art event

Current art event

rank 0 aggregator

output file

Repeated

NOTE:	Same	architecture	applied	to	running	a	multi-
parameter	tuning	of	event	generators	using	collider	
data	analysis	on	Mira	using	Pythia

https://cdcvs.fnal.gov/redmine/projects/art-hpc/wiki/



Data Organization:
• Data represented as rows that describe physics objects 

(particles) and the event in which they were seen
• 400kB/event and 5 x 108 simulated events for 

backgrounds and signals 
Data Processing: 
• Event-based processing, sequential file-based solution
• Batch processing on distributed computing farms
• 28,000 CPU hours to generate 2 TB tabular data, ~1 

day of processing to generate GBs of analysis ready 
tabular data, 5 – 30 minutes to run end-user analysis

Big Data Analytics: A CMS Dark Matter use case Recorded and simulated 
Events (200 TB)

Tabular data (2 TB)

Analysis tabular data (~ GBs)

plots and tables
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Data organization:  
• We convert the data to column oriented format in HDF5. 
• HDF5 is a well-known format for the HPC systems; it also 

allows us to use non-big data technologies to process these 
files. 

• Read HDF5 files into multiple Spark DataFrames, one Spark 
DataFrame per particle type

Data processing
• Define filtering operations on a DataFrame as a whole instead 

of an event. 
• Data is loaded once in memory and processed several times.
• Make plots, repeat as needed.

Our approach to Big Data management
Analysis-ready CMS data

(2 TB)

Convert to HDF5 format

.h5 file with multiple groups
(0.5 TB data)

Analysis

Custom HDF5 Spark Reader

Filter events and particles
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• The defacto standard ROOT I/O system is the major format for HEP data.
– Automated persistency (serialization plus compression) of C++ object oriented 

data structured
– No support for concurrency or use of HPC filesystems

• Current efforts are underway to efficiently utilize HDF5 for data storage
– Already discussed for analysis results in the Big Data project
– Addresses some of the concurrency issues

• Also require efficient transfer of data objects from process-to-process

I/O considerations underway
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• Language is critical for making a system useable
• We have long employed advanced C++ in our systems

– Already using features such as variadic templates, threads, and lambdas
– Are exploring concepts, ranges, memory allocation controls

• Python is still the higher-level language of choice, 
– Partly because of its simplicity and ease of integration with C++
– Partly because numpy/scipy, and matplotlib are available

• Nothing has yet appeared to supplant C++ and Python
– Functional languages are very attractive

• We will be using functional features of C++ as they appear
• Could help enable parallelism

– Julia is interesting, and R has been in use for high-level data manipulation

Programming languages
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• Groups we’ve been talking with
– HDF5 group for data model representation
– ORNL Data Analytics group (machine learning optimizations)
– ANL HPC data services and numerical optimization groups
– NERSC for Big Data with Spark and working with containers
– Kitware for visualization with ParaView

• Software technologies that have our attention
– Flink (to compare with Spark)
– We will continue our use of TBB, and watch HPX as is evolves
– Eigen, Blaze, Armadillo for linear algebra

Relationships and technologies
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• Leading to on-demand simulation and 
reconstruction 
– Driven by science analysis goal, working 

backwards
– Exascale path permits up to move 

towards these objectives
• Data path is different

– Dataset (collected sample) grows in real 
time

– On-demand processing permits the new 
data to be incorporated on-the-fly

– Memory intermediate result caching 
permits reuse across user community 

Future
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Future Era
No discrete processing 

phases; tasks are 
simultaneously active to 
support in situ analysis 

and reduction.

Memory or 
network 

communication

Memory or 
network 

communication

Writing to storage optional and selective

Simulation

Data Reduction

Analysis

Raw data 
records

Selected 
data records

Reduced 
data records

Particle data 
records

Metadata 
records

Metadata 
records

Physics model 
parameters

Geometry 
description

39



• Frameworks have permitted successful collaboration amongst thousands of 
scientists and is essential for dealing with complexity

• HPC technologies are critical for advancing scientific computing involving complex 
measures from instruments
– The hierarchical / distributed high-speed memory structure

• The scale of computing that is possible with HPC allows us to reduce the “time to 
science” through multi-stage workflows
– Reduces the intermediate I/O processing that is built into the current computing model

• Working towards a software system capable of allowing for multi-scale automated 
tuning and control 
– Feedback to experimental system
– Integration of simulations requiring fine-grained parallelism
– Distinct large-scale optimization stages

• Partnering with experts from leadership facilities

Conclusion
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Bag of slides …
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• (is this needed at all?)
• (was thinking of having it as a way to introduce big data technology as a useful 

component of the framework)

Addressing final data analytics 
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• Problem domain (sim and data coupled to reco and analysis, event processing and 
accelerator modeling, message visualization and data exploration)

• Usage information from HEP now and towards HL-LHC / DUNE
• What make data analytics possible with such a large group? (definitions and tools coverage)
• Can this be utilized or applied to exascale problems across a wider 
• Chance for complex campaigning involving controls (expends reach)
• Challenges in moving towards specialized hardware and exascale (diverse resource needs)
• Addressing I/O, data placement, data locality
• Addressing data ingestion, archival, and provenance
• Addressing final data analytics 
• On-demand simulation and reconstruction
• Use cases
• Relationships and technologies
• Direction

Outline
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• Limit I/O to disk storage
• Utilize large vector units
• Efficient movement of data 

between processes in a 
distributed environment 
using high bandwidth 
networking

• Shared framework services 
within nodes

• Localized data caching, as 
in big data technology

• Tighter integration with 
workload / workflow 
management

Evolving architecture key elements
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Future Era
No discrete processing 

phases; tasks are 
simultaneously active to 
support in situ analysis 

and reduction.

Memory or 
network 

communication

Memory or 
network 

communication

Writing to storage optional and selective

Simulation or 
Detector Data

Data Reduction

Analysis

Raw data 
records

Selected 
data records

Reduced 
data records

Metadata 
records

Metadata 
records

Instrument 
description

System 
configuration

User 
Console
(Laptop)

Restructured Event Processor

Restructured Event Processor

Restructured Event Processor

Custer 
management

Data query, filtering, 
file handling, and 
streaming services

Collection service, file 
writing, and storage 

rules

Results
push

Data push
(RDMA assist)Status / 

monitoring

Many-core 
HPC

Job 
configuration 
spans more 
specialized 
resources

Big Data management
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•  User code is what you 
and your colleagues 
provide.

•  Services provide 
access to global 
facilities.

•  Data model provides 
the representation of 
event data.

•  Event processor is the 
“event loop”, the core of 
the framework.

•  Configuration and 
logger systems can be 
used by everything.

User Code

LoggerConfig

ServicesModule 
InterfaceData Model

Event ProcessorInput Output

What are the parts of the art framework?
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Choosing algorithms to run

•  Algorithms (simulation, reconstruction, or just analysis code) 
is built into classes, put into dynamic libraries called modules.

•  Text files (in a language called FHiCL) declare
–   what modules will be loaded, and in what order they are to run
–  what files will be read and written

8/3/15M. Paterno | Framework Introduction12

output 1

plots 1

alg 1 alg 2 alg 3

path A

alg 4 alg 5

path B

plots 2

output 2

endpath

art file 1

art file 2
art input 

file

source

histogram 
file
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Accessing data

•  Modules never 
communicate with 
(call) other modules.

•  Modules can call 
services (e.g., to 
create histograms 
managed by ROOT).

•  Mostly, modules 
interact with an Event.

•  An Event is just an 
organized collection of 
data products, with 
information about them 
(metadata).

8/3/15M. Paterno | Framework Introduction13

alg1 plots1

product 1

product 3

product 2

product 5

alg 3
output 1

Event

service 
1



• sim and data coupled to reco and analysis, event processing and accelerator 
modeling, message visualization and data exploration

Problem domain
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• Science that Fermilab is interested in, and some computing requirements
• Some of the good things we done with regards to computing
• So we have been moving towards HPC platforms in preparation for Cori, Summit, 

and Aurora. We believe it is possible to move further ahead than just packaging 
and running our applications as is. 

• Taking Great leap from current HTC scientific data analysis (long latency workflow 
steps involving data and simulation and many files) practices to automated, 
integrated workflows heading into the exascale era, utilizing latest memory 
technology and optimizing with feedback loops.

• Here is where we are now, where difficulties lie, and how they are being addressed
• Here is our anticipated needs for computing.  
• Here are the major experiments.

Theme (temporary slide)
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