
Distributing User Code with
the CernVM FileSystem

Dave Dykstra
CHEP 2019

7 November 2019
Presenter: Ken Herner

CernVM

File system



Distributing user code to grid jobs

• Experiment code is successfully being distributed to grid jobs with the 
CernVM FileSystem (CVMFS)
– Relatively large amount of code
– Managed by a few privileged people per experiment
– Some delays in availability are acceptable

• Typically delays around 30 minutes, sometimes much longer due to outages

• End user code (such as for physics analysis) has not been using CVMFS
– Much smaller amount of code for each user
– Authentication for so many users is a challenge
– Significant delays are not acceptable

• Should reliably be less than 10 minutes so job batches aren’t significantly delayed

27 November 2019



Fermilab user code distribution story

• Many Fermilab-based experiments were distributing code via Network 
Attached Storage (NAS) mounted on worker nodes
– Frequent overloads experienced
– Couldn’t expand to grid

• NAS directories were unmounted from worker nodes
• Users asked to instead download code tarballs from high speed file 

server (dCache)
– Many jobs downloading up to 3GB tarballs at the beginning of jobs from 

dCache overloaded individual disk servers
– To mitigate, tarballs moved to “resilient” pool with copies on 20 disk 

servers each
• Highly wasteful of disk space, and both LAN and WAN bandwidth

7 November 2019 3



Considering CVMFS for user code

• CVMFS is efficient for code distribution
– Software tends to have many files in common with previous versions

• Files reused thanks to cvmfs deduplication
– Site and worker node caching works great for running many jobs
– Only the subset of files that are actually used are downloaded

• The main challenge for user code on CVMFS is that standard publish + 
distribution delays are too long
– A proof-of-concept test using existing tarballs from dCache showed publish 

rate could be reasonably handled by one server
– Distribution timing parameters can be reduced

• Reliability is much more important than for standard code
– Use two servers

7 November 2019 4



System design
• Two publishing servers for redundancy
• Each publishing server provides web api
• User code tarballs given unique Code ID (CID) based on hash of content
• Automatically clean out old tarballs
• Two repositories on each server so cleanups don’t block publishing

– When not cleaning up, publish in parallel
• Integrate with local job submission system (jobsub in Fermilab’s case)

– Clients directly upload tarballs to a publishing server
– Authenticated by X.509 proxy

• Publishing servers unpack each tarball in a directory name based on its CID
• Minimize distribution delays to be less than 5 minutes
• Job wrapper script waits (with a timeout) for CID to appear in any of the four 

repositories and passes the directory path to the job

7 November 2019 5



Control flow

7 November 2019 6



Publishing server API
• /pubapi/publish?cid=XXX

– Uses POST to upload tarball; easy to do with curl 
– Does queueing and publishing
– Responds OK when queued or PRESENT if cid already existed

• Also updates a timestamp if PRESENT, to defer cleanup
– CIDs assigned by client; api accepts any CID and may include slashes to group into subdirectories

• Fermilab’s client puts them into subdirectories by VO
• /pubapi/exists?cid=XXX

– Responds MISSING or PRESENT
• /pubapi/update?cid=XXX

– Exactly like exists, except updates the timestamp if PRESENT
• /pubapi/config

– Returns configuration, currently a list of configured repositories
• /pubapi/ping

– Returns OK, for monitoring and load balancing purposes

7 November 2019 7



Repository cleanup

• CID directories are automatically removed after a configurable 
number of days (default 30) since the last time they were used
– CVMFS is only used in this system for grid jobs, not as an archive
– Users must keep track of their own code and can republish if they need 

the same code again later
• Timestamps for previously published CIDs are stored in any 

repository when a CID is reused
– Because server and repository allocated for new publish might be 

different than the original one
• Cleanups happen in one repository per hour starting at a 

configurable hour of the night, followed by cvmfs garbage 
collection

7 November 2019 8



Publishing server software packaging

• Most of the publishing server software is packaged in a single 
rpm plus its dependencies
– Designed to be able to be deployed by multiple organizations
– Nothing Fermilab-specific

• Configuration is in a single simple file
– Mainly just repository names needed
– Some other standard system configuration needed such as grid-mapfile

• Creates repositories and replicas
• Provides https web api
• Does the automatic cleanup

7 November 2019 9



Minimizing distribution delays

• Distribution update time was minimized
– Time-To-Live set to 15 seconds in repository configuration instead of 

usual 4 minutes
– Cache delay set to usual 61 seconds in Apache
– Stratum 1 set to check for updates to these repositories twice per 

minute instead of usual once every 5 minutes
• Separate cron so doesn’t need to wait for other repositories

– cvmfs client kernel cache flush takes the usual 1 minute
• Total delay for small updates should be less than 3 minutes after 

publication

7 November 2019 10



Status

• Production publication system is in place, including 
expedited updates

• Updates to jobsub put into production yesterday
• VOs will begin transitioning to it soon
• Publishing server code available as open source
– https://github.com/cvmfs-contrib/cvmfs-user-pub

• Thank you to other contributors: Shreyas Bhat, Dennis Box, 
Hyunwoo Kim, and Tanya Levshina

7 November 2019 11

https://github.com/cvmfs-contrib/cvmfs-user-pub

