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~ CMS Simulation, ys =13 TeV, tt + PU, BX=25ns
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* Tracking is crucial for the physics goals of
the LHC experiments

- charged particle momenta, particle ID, jet tagging,
jet&MET resolution :

» |t is the most time consuming reco task A A
- and scales poorly with pile-up, problem for HL-LHC
- challenge especially for High Level Trigger (HLT)

* Two options in front of us:

- save time by reducing the tracking phase space
* with consequences on the experiments’ physics reach

- save time by making tracking faster! Requires R&D...

30—
20—

10—

Event display, CMS 2018 high PU run (PU 136)
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Moore’s Law

» CPU frequency stopped growing
exponentially:
- nothing for free anymore

* Since 2005, most of the gains in
single-thread performance come
from vector operations

* But number of logical cores is rapidly
growing too: multi-threading
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physics performance!

2= Fermilab
3 2019/11/07 mkFit - CHEP2019



mkFit Project

» Ongoing for ~5 years, well advanced

 Collaboration between physicists and computer scientists

from Cornell, Fermilab, Princeton, UCSD, UOregon
- funding from NSF IRIS-HEP, DOE SciDAC, USCMS

- http://trackreco.github.io/

* Mission: speedup Kalman filter (KF) tracking
algorithms using highly parallel architectures

* Why sticking to KF?

- Widely used in HEP in general, and CMS in particular
- Demonstrated high efficiency physics performance
- Robust handling of material effects
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_ f
Kalman Filter Dotector measurement

* Two step Iterative process:
- Propagate the track state from layer N-1 to layer N (prediction)
- Update the state using the detector hit (measurement) on layer N

updated state N-1
fterN-1 — X N-1

* Computing challenges: v § 010 @

- Many operations with small matrices, low arithmetic intensity
- O(2k) seeds and O(100k) hits/event @PU=70

* KF track finding is not straightforward to parallelize
- Combinatorial algorithm: branching to explore many candidates

- Heterogeneous environment:
different number of hits per track and tracks per event
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Key Features of the Algorithm

» Kalman filter operations use Matriplex library: SIMD processing of track candidates
- auto-generated vectorized code is aware of matrix sparsity

* Algorithm multithreaded at multiple levels with TBB tasks
- events, detector regions, bunches of seeds

* Lightweight description of detector in terms of geometry, material, magnetic field
- collapse barrel (endcap) layers at average r (z), use 3D position of hits

* Minimize memory operations (humber and size) within combinatorial branching
- bookkeeping of explored candidates, clone only best ranking ones at each layer (with per seed cap)

Actual geometry used by MkFit
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Timing Results for Standalone Application

* Showing results on Intel Skylake Gold processor (SKL)

» Core of algorithm achieves nearly 3x speedup from vectorization
- Ahmdal’s law: 60-70% of core algorithm code is effectively vectorized

* Full application achieves 30x speedup with multi-threading
- close to ideal scaling when all threads dedicated to different events

CE CMSSW_TTbar_PUS0 Multiple Events in Flight Speedup on SKL-SP [nVU=16int]
CMSSW_TTbar_PUSO0 Vectorization Speedup on SKL-SP [nTH=1]
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Deployment in CMS: CMSSW integration

* Integration in CMSSW has recently been the main focus of the group
- Github repository made public, mkFit is now integrated into CMSSW as an external

* Two aspects are not ideal in the first integration:
- When distributed in central CMSSW release, mkFit is compiled with gcc/core2
- Dedicated steps are used to convert CMSSW data formats to/from mkFit

CMS Simulation preliminary 13 TeV
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https://github.com/trackreco/mkFit

Physics Performance Improvements

* Integration in CMSSW gave access to central validation tools, which revealed a
phase space where mkFit physics performance was suffering: short tracks

* Dedicated effort to recover efficiency at low number of crossed layers
- Updated logic to count the number of missing hits in a track in a consistent way
- Updated candidate score used to decide which is the best track candidate

» Efficiency now on par with CMSSW across the board
- some more work needed to reduce fakes and duplicates, also need to recover overlap hits

Build Track Efficiency vs Sim Number of layers {p > 0.0 GeV/c} Build Track Efficiency vs Sim n {p > 0.9 GeV/c}
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Timing Performance of Initial lteration

» Single-thread performance on Intel SKL
- use ttbar events with <PU>=50

» Speedup of 6.2x compared to CMSSW

- track building is not the slowest component anymore!

» Data format conversions between CMSSW
and mkFit account for ~25% of mkFit time 150
- larger speedup possible if data formats are harmonized

* Here mkFit is compiled with icc and AVX-512
- with gcc speedup reduces to ~2.5x
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Towards HLT Integration

* Work so far mostly focused on offline configuration
* However, HLT is the natural application environment for mkFit

* HLT configuration has different challenges with respect to offline
- for many HLT paths, tracking is done in regions of interest
- silicon strip local reconstruction is on-demand within the track pattern recognition

* mkFit aims at performing global tracking at HLT: read all hits as an input

» Global strip reco is currently costly, investigate faster implementation:
- ideally start from raw and produce hits in the mkFit data format; compatible with GPU
» Current status:

- raw data unpacking and remapping to Detlds: implementation in progress
- strip data calibration: implementation in progress
- strip data clustering: initial implementation made and begin tested
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2¢ Fermilab
11 2019/11/07 mkFit - CHEP2019



Strip Clustering Results on CPUand GPU  ZU3°T 5

7’

» Clustering Algorithm (current implementation):
- |dentify seeds: =1 strip must have ADC > 3x noise D:-:D
- Seek L/R boundaries: X L
* (1) included strips must have ADCs > 2x noise Seed

* (2) Strips must be consecutive or have gap <= N strips (N depends on good/bad strips)
- Final checks: quadrature sum of ADCs >= 5x quadrature sum of noise; total charge > min

» Standalone implementation on CPU (OpenMP for now) and GPU (CUDA)

- Initial version processes a single event
- GPU version (P100) is ~3x faster than CPU (14-core Broadwell), including overhead
- overheads currently include data transfer and memory allocation; actual kernel time 7% only

* Working on improved version that will reduce overheads
- processing multiple events concurrently: asynchronous memory transfer
- using memory pool to pay the allocation overhead only at begin and end of job

€ =
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Exploration of Portable Implementations

» Exploration of GPU-compatible, portable implementations of track building
- pros: maintainable, minimal diffs between CPU and GPU code

OAK

- cons: may require trade-offs in terms of performance
5 RAPIDS/ RIDGE
ational Laboratory
» Started collaboration with RAPIDS@ORNL to Performance OfSPmpaféaL'Og'to‘z Kefmel
explore usage of portable compiler directives onasummitfode o
400 -

- version of full application with OpenMP (CPU for now) 2

- OpenACC in PropagationToZ function (out of ~100)
from full code, get large speedups on GPU

- challenges ahead: data transfer, CMSSW interface
0 [

* Other tests towards GPU-compatible code: DoenVP CPU. OpenACC GPU. OpenaCC GPU
- array programming: xtensor/numpy/cupy Comp. Only
- plan to try portable libraries and revisit CUDA implementation

207.1
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Conclusions

* mkFit code integrated in CMSSW as external library
* Physics performance (efficiency) on par with current tracking
» Speedup of >6x when compiled with icc and AVX-512

» Exploring utilization of GPUs at different stages
- strip local reconstruction
- portable implementation of algorithm

* Plans to publish a paper with detailed results soon - stay tuned!
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Backup
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Memory pam...mEEE---EHEEE

mkFit: early GPU results Array

* Explore GPU-friendly data structures Threads

* Matrix layout: Linear vs. Matriplex BT EEE  EEE

- For 6x6 matrix multiplications, the Matriplex layout

(with large size) gives better performance than alternatives

- Share same templated interface as CPU version, but implementation
customized for GPU/CUDA

» Candidate cloning: avoid moving tracks in global memory
- Parallelization implemented as one GPU thread per candidate
- Select the best new candidates for each seed in shared memory 180

- Process the list of new candidates with a heap-sort algorithm 160
* These developments were successful for track fitting while track |

building on K40 showed no significant speedups with respect to
the CPU version

- Including data transfers (taking about half of build time)

- Building code was still in embryonal stage, missing important features like
multiple events in flight (event: detector readout at beam crossing)

Elapsed time (ms)
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same strategy as the
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