UNIVERSITY
OF OREGON

Reconstruction of Charged Particle Tracks in Realistic Detector
Geometry Using a Vectorized and Parallelized Kalman Filter Algorithm

S.Lantz, K.McDermott, M.Reid, D.Riley, P.Wittich (Cornell); G.Cerati, A.Reinsvold Hall,

M.Kortelainen (Fermilab); P.Elmer, B.Wang (Princeton); S.Krutelyov, M.Masciovecchio, M.Tadel,
F.Wuirthwein, A.Yagil (UCSD); B.Gravelle, B.Norris (UOregon)

CHEP2019 - Nov. 07, 2019

~ CMS Simulation, ys =13 TeV, tt + PU, BX=25ns

o))
o

Tracking “Problem”

— —=— Full Reco —e— Track Reco

PU140 -

Time/Event [a.u.]

o)
o
TT T] T

40

* Tracking is crucial for the physics goals of
the LHC experiments

- charged particle momenta, particle ID, jet tagging,
jet&MET resolution :

» |t is the most time consuming reco task A A
- and scales poorly with pile-up, problem for HL-LHC
- challenge especially for High Level Trigger (HLT)

* Two options in front of us:

- save time by reducing the tracking phase space
* with consequences on the experiments’ physics reach

- save time by making tracking faster! Requires R&D...

30—
20—

10—

Event display, CMS 2018 high PU run (PU 136)
3F Fermilab

2 2019/11/07 mkFit - CHEP2019

Moore’s Law

» CPU frequency stopped growing
exponentially:
- nothing for free anymore

* Since 2005, most of the gains in
single-thread performance come
from vector operations

* But number of logical cores is rapidly
growing too: multi-threading

40 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10°)

Frequency (MHZz]

Typical Power
(Watts)

Number of
Logical Cores

o - : v vvé' vy .’.:‘
10° ‘, Z PO g,,,*mm., -
° MUSt eXpIOIt bOth Ievels Of 1970 19lBO 19|90 2(;00 2(;10 2020

. . . " g . Y

p a' ra I I e I I Z at I O n tO aVO I d S aC r I f I C I n g O n Original data up to the year 2010 collected and plotted by si:rowitz. F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
. New plot and data collected for 2010-2015 by K. Rupp

physics performance!

2= Fermilab
3 2019/11/07 mkFit - CHEP2019

mkFit Project

» Ongoing for ~5 years, well advanced

 Collaboration between physicists and computer scientists

from Cornell, Fermilab, Princeton, UCSD, UOregon
- funding from NSF IRIS-HEP, DOE SciDAC, USCMS

- http://trackreco.github.io/

* Mission: speedup Kalman filter (KF) tracking
algorithms using highly parallel architectures

* Why sticking to KF?

- Widely used in HEP in general, and CMS in particular
- Demonstrated high efficiency physics performance
- Robust handling of material effects

4 2019/11/07 mkFit - CHEP2019

o

X
3

@ SciHOAC

& Scientific Discovery through
QY | - :
, Advanced Computing

1 6 B Phase-1 Tracker - In front of IT sensors

| CMS Simulation
| Preliminary

1.4
1.2;
i
o.af
0.63
oal

0.2]

0 05

L‘—Mllllllll

1 15 2 25 3 35 4
In|

_ f
Kalman Filter Dotector measurement

* Two step Iterative process:
- Propagate the track state from layer N-1 to layer N (prediction)
- Update the state using the detector hit (measurement) on layer N

updated state N-1
fterN-1 — X N-1

* Computing challenges: v § 010 @

- Many operations with small matrices, low arithmetic intensity
- O(2k) seeds and O(100k) hits/event @PU=70

* KF track finding is not straightforward to parallelize
- Combinatorial algorithm: branching to explore many candidates

- Heterogeneous environment:
different number of hits per track and tracks per event

5 2019/11/07 mkFit - CHEP2019

Key Features of the Algorithm

» Kalman filter operations use Matriplex library: SIMD processing of track candidates
- auto-generated vectorized code is aware of matrix sparsity

* Algorithm multithreaded at multiple levels with TBB tasks
- events, detector regions, bunches of seeds

* Lightweight description of detector in terms of geometry, material, magnetic field
- collapse barrel (endcap) layers at average r (z), use 3D position of hits

* Minimize memory operations (humber and size) within combinatorial branching
- bookkeeping of explored candidates, clone only best ranking ones at each layer (with per seed cap)

Actual geometry used by MkFit

M!(1,1) M'(1,2) M'(1,N) M'(2,1) M'(N,N) MI(1L,1) M™1(1,2) M I(1,N) M™1(2,1) Layer Centroids

R1

m]

rlc

R2 M2(1,1) M2(1,2) M2(1,N) M2(2,1) M2(N,N) M™2(1,1) M*2(12) | ... | M™2,N) M=22,1) | ...,...

Tiitt

M2(1,1) M2(1,2) .| MeaNy M2(2,1)

6 2019/11/07 mkFit - CHEP2019 2fom]

Timing Results for Standalone Application

* Showing results on Intel Skylake Gold processor (SKL)

» Core of algorithm achieves nearly 3x speedup from vectorization
- Ahmdal’s law: 60-70% of core algorithm code is effectively vectorized

* Full application achieves 30x speedup with multi-threading
- close to ideal scaling when all threads dedicated to different events

CE CMSSW_TTbar_PUS0 Multiple Events in Flight Speedup on SKL-SP [nVU=16int]
CMSSW_TTbar_PUSO0 Vectorization Speedup on SKL-SP [nTH=1]

S
o

"E [| I I 1 I I I | I I I I I I 1 | II I 1 I I I 1 I I I I I L
ot 4 I I | | | I | | I I I I I I I I I I | | I I I Q) — "' —
E’ - | ';-1 I | | | | f u>.l - —e- 1 Events o -
u;J . a 35 e 2 Events ',‘ .. —
o 4 _ o [—%4Events ; é

‘] _ -] B ’ —
S r { —e— mkFit 3 4of_.. —% 8Events
®) : o))
o ; Ideal Scall @ = —a— 16 Events -
(?)i fooT eal SCaling ¢ E —e—32Events -
2 Q 25 ... —#— 64 Events —
S © I Ideal Scaling _
m o u & *
(03] > - il
& < 20
g
=

—
wn

10

| | I | | I | | I | | I IllIlllIlllT
2 4 6 8 10 12 14 16 o1 1

=l IQI&III‘&

1 1 I 1 1 1 1 I 1 1 1 1 I 1
40 50 60
Number of Threads

Matriplex Vector Width [floats]

/ 2019/11/07 mkFit - CHEP2019

= Fermilab

Deployment in CMS: CMSSW integration

* Integration in CMSSW has recently been the main focus of the group
- Github repository made public, mkFit is now integrated into CMSSW as an external

* Two aspects are not ideal in the first integration:
- When distributed in central CMSSW release, mkFit is compiled with gcc/core2
- Dedicated steps are used to convert CMSSW data formats to/from mkFit

CMS Simulation preliminary 13 TeV

" . . . > 1.2—— .
* CMS tracking structured in 10+ iterations S oy
O 1I— 1] ’ o+HighPtTriplet
- Seeding+building = combinatorial algorithms % _ <25 cilowbiousd
- _ _ _ _ > 08 S B THat
- Fitting+selection+masking = linear algorithms S O el
. . . C aae r : M O+Tobrec
* First milestone: track building for initial iteration [T iHuon nide-ou
_ SeedS made O.I: 4 hltS, flnds mOSt prOmpt traCkS 0_4__—_—— S
- Could easily be extended to include other iterations 02 | _ IHE ---------
Ozunj_al-n_a_&_a—t T R R R R
0 10 20 30 40 50 60

8 2019/11/07 mkFit - CHEP2019 Sim. track prod. vertex radius (cm)

https://github.com/trackreco/mkFit

Physics Performance Improvements

* Integration in CMSSW gave access to central validation tools, which revealed a
phase space where mkFit physics performance was suffering: short tracks

* Dedicated effort to recover efficiency at low number of crossed layers
- Updated logic to count the number of missing hits in a track in a consistent way
- Updated candidate score used to decide which is the best track candidate

» Efficiency now on par with CMSSW across the board
- some more work needed to reduce fakes and duplicates, also need to recover overlap hits

Build Track Efficiency vs Sim Number of layers {p > 0.0 GeV/c} Build Track Efficiency vs Sim n {p > 0.9 GeV/c}
> JL L R I B R B R IR L B B BN L B IR B B A N S | > ' '
c 1— . —— mkFit c 1— e —I— kFit
;8 - = | =1 —— CMSSW ;8 — ilfr :':H: ﬁ*ﬁfw I:[: +:Fi-:': 4 1 —|—cmssw
v =’= o
s F . T + : ! + #ﬁ Tﬂk +*"‘-Fﬁ _
0.8 o — 0.8— —
ttbar events, <PU>=50 i WESESS i i :
Algorithmic efficiency: sl it] sl 7
require Initial Iteration - MKk - - -
seed in denominator 041~ CMSSW ~ 041~ —_
0.2 — 02| —
9 2019/11/07 mkFit - CHEP2019 O"'é""1Io""1|5""2|o""2|5" 93""-'2"".'1""é""i""é""s

Number of layers n

Timing Performance of Initial lteration

» Single-thread performance on Intel SKL
- use ttbar events with <PU>=50

» Speedup of 6.2x compared to CMSSW

- track building is not the slowest component anymore!

» Data format conversions between CMSSW
and mkFit account for ~25% of mkFit time 150
- larger speedup possible if data formats are harmonized

* Here mkFit is compiled with icc and AVX-512
- with gcc speedup reduces to ~2.5x

Average real time (ms)
S 3

-
-

& & &) S o)

%

R €.

2 &
e, ",
2 o 2

€ =
2¢ Fermilab
10 2019/11/07 mkFit - CHEP2019

Towards HLT Integration

* Work so far mostly focused on offline configuration
* However, HLT is the natural application environment for mkFit

* HLT configuration has different challenges with respect to offline
- for many HLT paths, tracking is done in regions of interest
- silicon strip local reconstruction is on-demand within the track pattern recognition

* mkFit aims at performing global tracking at HLT: read all hits as an input

» Global strip reco is currently costly, investigate faster implementation:
- ideally start from raw and produce hits in the mkFit data format; compatible with GPU
» Current status:

- raw data unpacking and remapping to Detlds: implementation in progress
- strip data calibration: implementation in progress
- strip data clustering: initial implementation made and begin tested

€ =
2¢ Fermilab
11 2019/11/07 mkFit - CHEP2019

Strip Clustering Results on CPUand GPU ZU3°T 5

7’

» Clustering Algorithm (current implementation):
- |dentify seeds: =1 strip must have ADC > 3x noise D:-:D
- Seek L/R boundaries: X L
* (1) included strips must have ADCs > 2x noise Seed

* (2) Strips must be consecutive or have gap <= N strips (N depends on good/bad strips)
- Final checks: quadrature sum of ADCs >= 5x quadrature sum of noise; total charge > min

» Standalone implementation on CPU (OpenMP for now) and GPU (CUDA)

- Initial version processes a single event
- GPU version (P100) is ~3x faster than CPU (14-core Broadwell), including overhead
- overheads currently include data transfer and memory allocation; actual kernel time 7% only

* Working on improved version that will reduce overheads
- processing multiple events concurrently: asynchronous memory transfer
- using memory pool to pay the allocation overhead only at begin and end of job

€ =
2¢ Fermilab
12 2019/11/07 mkFit - CHEP2019

Exploration of Portable Implementations

» Exploration of GPU-compatible, portable implementations of track building
- pros: maintainable, minimal diffs between CPU and GPU code

OAK

- cons: may require trade-offs in terms of performance
5 RAPIDS/ RIDGE
ational Laboratory
» Started collaboration with RAPIDS@ORNL to Performance OfSPmpaféaL'Og'to‘z Kefmel
explore usage of portable compiler directives onasummitfode o
400 -

- version of full application with OpenMP (CPU for now) 2

- OpenACC in PropagationToZ function (out of ~100)
from full code, get large speedups on GPU

- challenges ahead: data transfer, CMSSW interface
0 [

* Other tests towards GPU-compatible code: DoenVP CPU. OpenACC GPU. OpenaCC GPU
- array programming: xtensor/numpy/cupy Comp. Only
- plan to try portable libraries and revisit CUDA implementation

207.1

23.9

€ =
2¢ Fermilab
13 2019/11/07 mkFit - CHEP2019

Conclusions

* mkFit code integrated in CMSSW as external library
* Physics performance (efficiency) on par with current tracking
» Speedup of >6x when compiled with icc and AVX-512

» Exploring utilization of GPUs at different stages
- strip local reconstruction
- portable implementation of algorithm

* Plans to publish a paper with detailed results soon - stay tuned!

€ =
2¢ Fermilab
14 2019/11/07 mkFit - CHEP2019

Backup

€ =
2¢ Fermilab
15 2019/11/07 mkFit - CHEP2019

Memory pam...mEEE---EHEEE

mkFit: early GPU results Array

* Explore GPU-friendly data structures Threads

* Matrix layout: Linear vs. Matriplex BT EEE EEE

- For 6x6 matrix multiplications, the Matriplex layout

(with large size) gives better performance than alternatives

- Share same templated interface as CPU version, but implementation
customized for GPU/CUDA

» Candidate cloning: avoid moving tracks in global memory
- Parallelization implemented as one GPU thread per candidate
- Select the best new candidates for each seed in shared memory 180

- Process the list of new candidates with a heap-sort algorithm 160
* These developments were successful for track fitting while track |

building on K40 showed no significant speedups with respect to
the CPU version

- Including data transfers (taking about half of build time)

- Building code was still in embryonal stage, missing important features like
multiple events in flight (event: detector readout at beam crossing)

Elapsed time (ms)
=
(@]
o

16 2019/11/07 mkFit - CHEP2019

“Linear”

HEEE N

"Matriplex”
same strategy as the
one used for CPUs’
vector units.

geg®

Heap
Sort

geg®

Heap
Sort

Push-pop Push-pop

Heap
Sort

Heap i
:‘.Push-pop

Fitting time vs
Matriplex size

for different Ninreads
on CPU filling the GPU

-

B—

——

o—e] thread
o—e 5 threads |.
o—e 10 threads

—0
ﬂ

5000 10000 15000

20000

Matriplex size

25000 30000 350

