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Outline

´ Exascale: GPU for the foreseeable future
´ DOE’s Exascale Computing Project: Investing in hardware and software 

for science
´ Geant On GPU: prior efforts
´ Exascale Geant Pilot: a collaboration between ECP and HEP
´ Goals and strategy
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Exascale: GPU for the Foreseeable Future

´ Perlmutter (NERSC-9, LBNL) 2020: AMD and Nvidia GPUs
´ GPU nodes will have a GPU to CPU ratio of 4:1
´ 256GB memory per node or greater
´ >4000 node CPU partition, approximately 

same capability as full Cori system today

´ Frontier (ORNL) 2021 and El Capitan (LLNL) 2023:
´ one AMD EPYCTM processor to four AMD Instinct graphics cards 

´ A21 (ANL) 2021:
´ Intel Configurable Spatial Accelerator

´ Dataflow graph engine
´ Maps compiler execution graph (IR) to hardware fabric

´ Elements of modern switches, FPGAs, KNL 

´ Intel GPU, Intel ONE API
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Exascale Computing Project

´ Preparing for the next generation of supercomputers. 

´ 10-year project led by six DOE and NNSA laboratories and executed in 
collaboration with academia and industry 

´ Accelerating delivery of a capable exascale computing ecosystem for 
breakthroughs in scientific discovery, energy assurance, economic 
competitiveness, and national security. 

´ Goal to deliver breakthrough modeling and simulation solutions that analyze 
more data in less time, providing insights and answers to the most critical US 
challenges in scientific discovery, energy assurance, economic 
competitiveness, and national security
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´ DOE push for use of Exascale Computing (and thus GPU) not limited to ECP.
´ ECP is through the DOE Office of Science’s Advanced Scientific Computing Research

´ DOE Office of Science’s High Energy Physics program is also investing towards use 
of GPU

´ Explicit constraints for experiments in upcoming years

Use (mostly/only) Exascale machines
and 

Use of Exascale machines allowed only if making efficient use of accelerators

´ Started first (AFAIK) official collaboration between HEP and ECP
´ Investigating general purpose detector simulation on GPU
´ Fermilab, Lawrence Berkeley Lab, Oak Ridge National Lab, University of Pittsburg
´ Interest from researchers associated with US-ATLAS and US-CMS

DOE, Exascale, GPU, and HEP
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Geant On GPU: Existing Efforts
´ MPEXS-DNA: simulator for track structures and radiation chemistry at subcellular scale.

´ EM Physics and diffusion and chemical reactions for molecular species for micro dosimetry simulation

´ Speed up 2900x (NVidia Volta)

´ GATE simulation on GPU
´ Simulations of Preclinical and Clinical Scans in Emission Tomography, Transmission Tomography and Radiation Therapy

´ GPU only for voxelized phantom (very time consuming)  - 60x

´ GPU only for PET and CT applications (validated in Bert et al2013) – 70x

´ G4CU: Geant4 Based Simulation of Radiation Dosimetry in CUDA
´ Focused on dose calculation for radiation therapy

´ EM Physics in H2O in voxel geometry, 75~97 speedup

´ Opticks: GPU Optical photon simulation for Particle Physics with NVDIA’s OptiX
´ 200x speedup with mobile GPU (GeForce GT 750M)

´ Applications where unlike HEP there are usually a small subset of code/work/configuration 
that dominates execution time and that have inherently less conditional branches

´ Those packages are often closed source.

6

2019-11-05Philippe Canal - Liz Sexton-Kennedy - CHEP 2019 - November 2019



Geant Exascale/GPU Pilot Project

´ Goal to study and characterize architecture and performance
´ Will encapsulate, at first, a minimum set of physics and software framework 

processes necessary to describe a HEP simulation problem.
´ Will then be used to exercise/research communication, computation and data 

access patterns.

´ Main objective is to identify re-engineering opportunities that will increase event 
throughput by improving single node performance and being able to make 
efficient use of of the next generation of accelerators available in exascale
facilities.
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Goals

´ Investigate how to best use GPUs for full HEP simulation
´ Estimate higher limit of speed-ups.

´ Explore memory access, computation ordering, and CPU/GPU 
communication patterns
´ Require flexibility on data structure and code structure

´ Avoid over-simplification
´ Look at the whole Geant simulation chain not just a few components

´ Proxy for generic Monte-Carlo transport simulation framework that 
executes on either the CPU or GPU or combination of both
´ E.g. use GPU where speed-up has been demonstrated, avoid GPU where 

speed-up is highly unlikely (e.g. physics with significant branching; particles 
with short-lifetimes and/or a relatively small average number of interactions)

´ Cost of data transfers will be a key metric
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Strategies

´ Avoid constraints 
´Backward compatibility is not a requirement
´ Tracking change ‘upstream’

´ Reuse or leverage existing packages
´Newer components like VecGeom, latest magnetic field and physics 

implementation.

´ Focus on NVidia compiler at first
´Will need to understand AMD and Intel programming direction
´Likely might switch to a library like Kokkos
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GPUs and Polymorphism

´ Detector simulation relies (needs) polymorphismto support a wide 
range of particles and physics models and to allow customization 
of the simulation (e.g. Custom Physics lists).

´ Copying objects to and from GPU invalidates virtual table (if any)
´ Full Static polymorphism

´ typically leads to template propagation throughout the code
´ Solution: Partial Static Polymorphism

´Hybrid generic and type-specific container
´Virtuality “Eraser” 

´Mechanism to access content of concrete class ‘Track’ without going 
through virtual table.

´ Physics list configuration at compile time through template and 
traits
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Separation Of State and Access.

´ Split the struct holding the Track class from the accessors and modifiers 
functions.

´ Allow for smaller set of interfaces
´ Geometry info, Physics info, Etc.

´ Will allow change/investigation in physical layout of Track transparently 
to the rest of code.
´ Possibly different layout (eg. shorter/smaller) on GPU than CPU
´ Struct of Array vs Array of Struct
´ Etc.

´ Allow to factor out more ‘track’ related functionality
´ while still keep it close to the (kind of) code that uses it and without having 

unwieldly large classes.
´ “Should” disappear thanks to inlining and optimization
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Conclusion

´ New project to explore GPU use for HEP Geant Simulations

´ Targeting the upcoming Exascale class machine

´ Collaboration between ECP and HEP involving FNAL, ORNL and LBL
´ Joint expertise in HPC, GPU, Geant4/V

´ Currently setting up the infrastructure classes and functionality

´ Timeframe for incorporating ideas/solutions into production quality 
simulation toolkit is HL-HLC
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Partial Static Polymorphism

´ Hybrid generic and type-specific container

template <typename... ParticleTypes> struct VariadicTrackManager {
…
// without template param, we push to generic at end
void PushTrack(Track* track) { m_tracks[num_types]->PushTrack(track); }

// with template params, we push to particle-specific queue
template <typename ParticleType,

enable_if_t<(is_one_of_v<ParticleType, TupleType>)> = 0>
void PushTrack(Track* track) {

m_tracks[index_of<ParticleType, TupleType>::value]->PushTrack(track);
}

// without template params, we pop from end
Track* PopTrack()

template <typename ParticleType> TrackCaster<ParticleType>* PopTrack();
};
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Virtuality ”Eraser”

´ Mechanism to access content of concrete class ‘Track’ without 
going through virtual table:

template <typename Type>
struct TrackCaster : public Track
{

Type*  GetParticleDefinition() const { return static_cast<Type*>(m_pdef); }
std::string GetParticleName() const
{

return static_cast<Type*>(m_pdef)->Type::GetName();
}
// no need to reimplement GetTrackId()

};
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Dispatching

´ Configuration of actions at compile time via “traits”. 

template <typename... ParticleTypes> struct ParticleStepper
{

// ...
void AlongStep( … )
{

// component::start is the operator struct this is the "TypeList"
using ProcessTypes = std::tuple< AlongStep<ParticleTypes>… >;

// "ProcessTypes" (our operator typelist) expands to
//
// std::tuple < AlongStep < Photon >,
//                 AlongStep < Electron > >;
apply<void>::access< ProcessTypes >(  …. );

}
// ...

};
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Description of the functionality necessary for the Geant Exascale Proxy

The proxy should be a standalone application with a mean to explore various 
detector layouts, for example the CMS detector and a Liquid Argon TPC. It should 
provide interfaces for configuration and options for transport, event input, and 
output and either indirectly or directly include performance measurement tools.
The primary goal of the proxy is to explore the best ways to leverage the type of 
coprocessor (GPGPU) expected in the next generation of HPC machines (even if 
this require more code and dependency than a typical proxy application)

Configuration interfaces
physics lists
detector descriptions (e.g. GDML)
input event types



Some lessons learned from GeantV

´ Main factors in the speedup: modern code developed from ground up

´ Better cache use
´ Tighter code (e.g., less indirections and branching)

´ Vectorization’s impact (much) smaller than hoped for
´ Effectively small fraction of the GeantV code has been vectorized or is run in vector mode. 

(Amdahl's law limits overall speedup.)
´ Basketization is challenging

´ Either extra memory copy (using collection of tracks)
´ Or lower memory access coherency (using collection of pointers)

´ ”Localized” benchmark performance challenging to extend to full use case
´ Migration of backward incompatible solutions [not necessarily GeantV] to a real 

experiment is manageable within the timescale of HL-LHC
´ Example: Successful integration tests with CMSSW, including physics validation and 

computing performance evaluation – GeantV events reconstituted, hits ready for 
digitization!

´ Heterogeneous computing solutions possible – CMSSW external work feature
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Options and Potential Strategies 
1. "Physics Preserving" options

a) Code modernization using lessons learned from GeantV and other R&D lines of work

b) Adaptation to HPC and efficient use of accelerators

2. Fast Simulation options
a) Improvements to parametrized simulation or extend fast simulation use cases –

Example: CMS' current parametrized simulation ( <<1 sec/event and 
reproduces most physics observables within 10%)

b) R&D on Machine Learning (ML/AI) to achieve acceptable speed/fidelity 
balance

External conditions from experiments and computing technology
o Experiments need high precision for e.g. MET, boosted objects, jet sub-structure, particle 

separation in high-granularity detectors – need full G4 simulation as in run 2

o ML may prove to replace full sim (physics preserving) or be just another fast sim option 
with limited applications – need large “full simulation” for training anyway (HPC?)

o HPC facilities increasing fraction of HEP computing resources – guidance from funding 
agencies: "adapt, run on accelerators, save us money"
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Transport Options
For a reasonably representative example of simulation, we find that processing 
photon, e-, e+, take have about 80% of the CPU time specifically dedicated to 
particle processing and represents 70% of the number of particles. If we also 
include neutrons, pi+, pi-, and protons this goes up to 99% of the cpu time and 98% 
of the number of particles. In addition the code for the simulating the former set 
exist in a easier-to-extract form than for the later set.

Given these ratio, in the first phase the application should focus on:

charged particles in uniform electromagnetic field realistic electromagnetic field 
description used in typical HEP experiments standard set of electromagnetic 
physics processes and models required for most of HEP detector simulation, 
including: 

Charged particles 
Ionization: Bremsstrahlung, Multiple scattering models (electron and 
positron)

Photons 
Photoelectric Effect, Compton Scattering, Pair-production
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Event Input
Particle gun with customizations:

number of particles
particle types
random distributions in energy, eta, phi in given ranges
Ability to use HEPevents would be a plus

Output
The proxy should be capable of producing output data representative of a typical 
HEP experiment, for example digitized hits (scoring) in sensitive detectors.
Performance Measurements
The proxy should include (directly or indirectly) the ability to measure:

scalability
event throughput
memory usage under various configuration settings, including multi-threading 

Additional Notes
An estimate of the date size for input events for a real physics process (for example 
Higgs -> ZZ , Z to all decays, O(1000) primary tracks) is in the order of 10's of kilobytes 
(for example 32K/event at the LHC energy). A typical output rate is in the order of 1.5 
MB per event (for simulated data, compared to about 1MB for the equivalent real 
data.)



ECP Strategic Goals 
and Outcomes

´ Goal: Applications
´ Foundational element of ECP and vehicle for delivery of results from the exascale systems enabled by ECP. Each 

addresses an exascale challenge problem—a problem of strategic importance and national interest that is intractable 
without at least 50 times the computational power of today’s systems

´ Goal: Software Technologies
´ Underlying technologies that applications are built and relied on: essential for application performance, portability, 

integrity, and resilience. Spans low-level system software to high-level application development environments, including 
infrastructure for large-scale data science and an expanded and vertically integrated software stack with advanced 
mathematical libs and frameworks, extreme-scale programming environments, tools, and visualization libs

´ Goal: Hardware and Integration
´ Partnerships between U.S. vendors and DOE’s application and software developers to develop a new generation of 

commodity computing components. Assure at least two diverse and viable exascale computing technology pathways 
for the Nation to meet identified mission needs and proactively engage and integrate with DOE HPC facilities in the 
process.

´ Outcome: Accelerated delivery of a capable exascale computing ecosystem to provide breakthrough solutions 
addressing our most critical challenges in scientific discovery, energy assurance, economic competitiveness, and 
national security
´ Capable: Wide range of applications can effectively use the systems developed through ECP, ensuring that both 

science and security needs will be addressed (affordable, usable, useful)
´ Exascale: Enhance application performance by 50x relative to today’s systems (e.g., ORNL’s Titan)

´ Ecosystem: Not just more powerful systems, but all methods and tools needed for effective
use of ECP-enabled exascale systems to be acquired by DOE labs
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Application Challenges on 
Exascale Systems

´ Get ready by running well on today’s machines 
´ If you can run well on today’s machines you will be ready enough that you can update your 

code in time 

´ Leverage standards or frameworks:
´ OpenMP, Kokkos and RAJA will likely work on whatever comes out and can limit your exposure to porting 

yourself 

´ Avoid the newest language features unless needed

´ In particular, modern Fortran support with OpenMP tends to lag behind 

´ Exascale is happening through increased parallelism not clock speeds 
´ While a continuation of the last decade this makes two things harder 

´ Improving time to solution

´ Non-parallel code sections/algorithms 

´ This will be made worse because network latencies, gpu kernel launch times and other Amdahl 
bottlenecks are hard to drive down at the rate of throughput increases. 

´ Total memory capacity is unlikely to scale 
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Most significant challenges in 
preparing applications for 
exascale machines

´ Granularity of parallelism 
´ Expose a lot, use less. 

´ Transition overhead and data movement 
´ Network and memory speed will decrease relative to compute speed. 

´ Data-structure restructuring needed – Not just loops 
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Programming Preparation
Thoughts 

´ Do what you can on existing machines
´ Port to GPUs now (E.g., Summit, Sierra)
´ Port to KNL now (vectorization) (E.g., Cori) 

´ Begin to partition Data structures and multi-level problem decomposition 
´ Accelerators (surprise!) are important

´ Highest fraction of peak performance is here
´ SW tools continue to improve 

´ Increasing on-node parallelism 
´ Interconnect performance not tracking increase in node performance 
´ More memory per node (good news!)

´ Less memory per thread (not so good news) 

´ Trending to tighter integration of CPUs and accelerators
´ Increasing coherence – simplifies programming... but often at performance cost 
´ Memory / Allocation increasingly important 
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ECP focus areas
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Software Technology (ST)

Spans low-level operational 
software to high-level 
applications software 
development environments, 
including support for data needs 
of science and national security 
activities at exascale
• Line of sight to applications
• Software Development Kits (SDKs) to 

enhance the drive 
for collaboration

• Delivery of specific 
software products

Application Development (AD)

Develops and enhances 
predictive capability of 
applications critical to DOE 
across science, energy, and 
national security mission space
• Targeted development of 

requirements-based models, 
algorithms, and methods

• Integration of appropriate software 
and hardware via co-design 
methodologies

• Systematic improvement 
of exascale system readiness 
and utilization

• Demonstration and assessment 
of effective software integration

Hardware and Integration (HI)

Ensures integrated delivery 
of specific outcomes and 
products on targeted systems 
at leading DOE HPC facilities  
• PathForward
• Hardware evaluation
• Application integration at facilities
• Software deployment at facilities

• Facility resource utilization
• Training and productivity
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Hardware and Integration
2.4

Project Management
2.1

Project Planning and 
Management

2.1.1

Project Controls and Risk 
Management

2.1.2

Information Technology 
and Quality 

Management
2.1.5

Business Management
2.1.3

Procurement 
Management

2.1.4

Communications and 
Outreach

2.1.6

Chemistry and Materials 
Applications

2.2.1

Energy Applications
2.2.2

National Security 
Applications

2.2.5

Earth and Space 
Science Applications

2.2.3

Application Development
2.2

Software Technology
2.3

Programming Models 
and Runtimes

2.3.1

Development Tools
2.3.2

Software Ecosystem and 
Delivery

2.3.5

Math Libraries
2.3.3

Data and Visualization
2.3.4

Data Analytics and 
Optimization 
Applications

2.2.4

Co-Design
2.2.6

PathForward
2.4.1

Hardware Evaluation
2.4.2

Facility Resource 
Utilization

2.4.5

Application Integration 
at Facilities 

2.4.3

Software Deployment 
at Facilities

2.4.4

Training and Productivity
2.4.6

Exascale Computing Project 
2.0
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Energy Applications
Modeling and simulation of existing and future technologies for the efficient and 
responsible production 
of energy that meets the growing needs of the US
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Modeling of plasma-based particle reactors, leading to the design 
of a 1 TeV electron-positron high-energy colliderWarpX

Increase the efficiency and reduce the cost and time to market for complex 
multiphase flow reactor designs for carbon capture and storage technologiesMFIX-Exa

Design optimization for small modular reactors, a key component 
in affordable nuclear energy for the futureExaSMR

Whole-device, high-fidelity modeling approach for magnetically confined fusion 
plasmas applicable to a high-performance advanced tokamak regimeWDMApp

Detailed modeling and simulation of combustion physics to reduce petroleum use 
(increase efficiency) and reduce greenhouse gas emissions

Combustion-
PELE

Modeling and simulation of whole wind plant performanceExaWind
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´ Value of HPC computing in nuclear was demonstrated by CASL
´ 2012: Shift (MC) neutronics calculations were used to validate startup 

conditions of the new WEC AP1000® reactor

´ 2015 – 2017: VERA – Shift is being used to model WB2 startup

´ These calculations use most of Titan
´ 18 688 compute nodes

´ 1012 MC particle histories

´ CASL is primarily focused on industry-level computing
´ Not addressing coupled, multicycle high-resolution modeling

´ High-order neutronics used for benchmarking

´ Transport for Ex-core dosimetry and pressure vessel fluence

ExaSMR – motivation for HPC in nuclear reactor 
modeling



´ Coupled MC neutronics/CFD simulations steady state operation
´ Model movable absorbers

´ Optimize fuel assembly designs with strong power gradients

´ Coupled MC neutronics/CFD simulations of the full core in steady-state, low-flow critical heat flux (CHF) 
conditions 
´ Demonstrate a substantial steady-state CHF margin

´ Transient coupled MC neutronics/CFD simulations of the low-flow natural circulation startup
´ Significant advancement over empirically correlated 5 × 5 rod bundle experiments that are used for design

Small Modular Reactor (SMR) Challenge Problems 
require high-resolution models

Couple MC neutronics and LES, multiphase CFD are required to address these challenges



Required compute capability for Challenge Problems
31

CFD
Neutronics

Steady-State
Operational
Modeling

CHF
Transients and
Kinetics
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Geant on GPU

´ MPEXS-DNA: https://www.ncbi.nlm.nih.gov/pubmed/30593679 , 
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13048

´ Gate http://www.opengatecollaboration.org/sites/default/files/Talk6.pdf , 
https://www.creatis.insa-lyon.fr/~dsarrut/articles/Bert2012.pdf , 
http://www.opengatecollaboration.org/#

´ G4CU: 
https://kds.kek.jp/indico/event/15926/session/30/contribution/110/material/slides/0.pdf

´ Opticks: 
https://indico.cern.ch/event/647154/contributions/2733123/attachments/1529047/239224
5/opticks_gpu_optical_photon_simulation_sep2017_wollongong.pdf
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